Advertisement

Role of Glycosaminoglycans in Infectious Disease

  • Akiko Jinno
  • Pyong Woo ParkEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

Glycosaminoglycans (GAGs) have been shown to bind to a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi in vitro. GAGs are thought to promote pathogenesis by facilitating pathogen attachment, invasion, or evasion of host defense mechanisms. However, the role of GAGs in infectious disease has not been extensively studied in vivo and therefore their pathophysiological significance and functions are largely unknown. Here we describe methods to directly investigate the role of GAGs in infections in vivo using mouse models of bacterial lung and corneal infection. The overall experimental strategy is to establish the importance and specificity of GAGs, define the essential structural features of GAGs, and identify a biological activity of GAGs that promotes pathogenesis.

Key words

Heparan sulfate Chondroitin sulfate Proteoglycan Syndecan Pneumonia Keratitis Cathelicidin Antimicrobial peptide Host defense 

Notes

Acknowledgements

We would like to thank past and current members of the Park laboratory for developing essential reagents and constantly refining the described procedures. This work was supported by NIH grants R01 EY021765 and R01 HL107472.

References

  1. 1.
    Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128PubMedCrossRefGoogle Scholar
  2. 2.
    Wilhelmus KR (2002) Indecision about corticosteroids for bacterial keratitis: an evidence-based update. Ophthalmology 109:835–842PubMedCrossRefGoogle Scholar
  3. 3.
    Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L (2003) Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol 87:834–838PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Limberg MB (1991) A review of bacterial keratitis and bacterial conjunctivitis. Am J Ophthalmol 112:2S–9SPubMedGoogle Scholar
  5. 5.
    Jett BD, Gilmore MS (2002) Host-parasite interactions in Staphylococcus aureus keratitis. DNA Cell Biol 21:397–404PubMedCrossRefGoogle Scholar
  6. 6.
    Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376:826–834PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Abusriwil H, Stockley RA (2007) The interaction of host and pathogen factors in chronic obstructive pulmonary disease exacerbations and their role in tissue damage. Proc Am Thorac Soc 4:611–617PubMedCrossRefGoogle Scholar
  8. 8.
    Folkesson A, Jelsbak L, Yang L et al (2012) Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10:841–851PubMedCrossRefGoogle Scholar
  9. 9.
    Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851PubMedCrossRefGoogle Scholar
  10. 10.
    Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bzhalava D, Guan P, Franceschi S, Dillner J, Clifford G (2013) A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology 445:224–231PubMedCrossRefGoogle Scholar
  12. 12.
    Rehermann B (2013) Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 19:859–868PubMedCrossRefGoogle Scholar
  13. 13.
    Rostand KS, Esko JD (1997) Microbial adherence to and invasion through proteoglycans. Infect Immun 65:1–8PubMedCentralPubMedGoogle Scholar
  14. 14.
    Bartlett AH, Park PW (2010) Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 12:e5PubMedCrossRefGoogle Scholar
  15. 15.
    Spillmann D (2001) Heparan sulfate: anchor for viral intruders? Biochimie 83:811–817PubMedCrossRefGoogle Scholar
  16. 16.
    Teng YH, Aquino RS, Park PW (2012) Molecular functions of syndecan-1 in disease. Matrix Biol 31:3–16PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Shukla D, Liu J, Blaiklock P et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83:2067–2074PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Leistner CM, Gruen-Bernhard S, Glebe D (2008) Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 10:122–133PubMedGoogle Scholar
  20. 20.
    Shi Q, Jiang J, Luo G (2013) Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol 87:6866–6875PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Tan CW, Poh CL, Sam IC, Chan YF (2013) Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 87:611–620PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Guzman-Murillo MA, Ruiz-Bustos E, Ho B, Ascencio F (2001) Involvement of the heparan sulphate-binding proteins of Helicobacter pylori in its adherence to HeLa S3 and Kato III cell lines. J Med Microbiol 50:320–329PubMedGoogle Scholar
  23. 23.
    Bucior I, Mostov K, Engel JN (2010) Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun 78:939–953PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Isaacs RD (1994) Borrelia burgdorferi bind to epithelial proteoglycan. J Clin Invest 93:809–819PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    O’Donnell CD, Tiwari V, Oh MJ, Shukla D (2006) A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology 346:452–459PubMedCrossRefGoogle Scholar
  26. 26.
    Freissler E, Meyer auf der Heyde A, David G, Meyer TF, Dehio C (2000) Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cell Microbiol 2:69–82PubMedCrossRefGoogle Scholar
  27. 27.
    Alvarez-Dominguez C, Vasquez-Boland J, Carrasco-Marin E, Lopez-Mato P, Leyva-Cobian F (1997) Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88PubMedCentralPubMedGoogle Scholar
  28. 28.
    Pethe K, Alonso S, Biet F et al (2001) The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190–194PubMedCrossRefGoogle Scholar
  29. 29.
    Bishop JR, Crawford BE, Esko JD (2005) Cell surface heparan sulfate promotes replication of Toxoplasma gondii. Infect Immun 73:5395–5401PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Schmidtchen A, Frick I, Björck L (2001) Dermatan sulfate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol 39:708–713PubMedCrossRefGoogle Scholar
  31. 31.
    Park PW, Pier GB, Hinkes MT, Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411:98–102PubMedCrossRefGoogle Scholar
  32. 32.
    Park PW, Foster TJ, Nishi E, Duncan SJ, Klagsbrun M, Chen Y (2004) Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin. J Biol Chem 279:251–258PubMedCrossRefGoogle Scholar
  33. 33.
    Chen Y, Bennett A, Hayashida A, Hollingshead S, Park PW (2005) Streptococcus pneumoniae sheds syndecan-1 ectodomains via ZmpC, a metalloproteinase virulence factor. J Biol Chem 282:159–167CrossRefGoogle Scholar
  34. 34.
    Hayashida A, Amano S, Park PW (2011) Syndecan-1 promotes Staphylococcus aureus corneal infection by counteracting neutrophil-mediated host defense. J Biol Chem 285:3288–3297CrossRefGoogle Scholar
  35. 35.
    Dubreuil JD, Giudice GD, Rappuoli R (2002) Helicobacter pylori interactions with host serum and extracellular matrix proteins: potential role in the infectious process. Microbiol Mol Biol Rev 66:617–629, table of contentsPubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Duensing TD, Wing JS, van Putten JPM (1999) Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun 67:4463–4468PubMedCentralPubMedGoogle Scholar
  37. 37.
    Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471PubMedCrossRefGoogle Scholar
  38. 38.
    Lindahl U, Kusche-Gullberg M, Kjellén L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273:24979–24982PubMedCrossRefGoogle Scholar
  39. 39.
    Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728PubMedCrossRefGoogle Scholar
  40. 40.
    Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10:951–958PubMedCrossRefGoogle Scholar
  41. 41.
    Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830:4719–4733PubMedCrossRefGoogle Scholar
  42. 42.
    Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105:2745–2764PubMedCrossRefGoogle Scholar
  43. 43.
    Kobayashi F, Yamada S, Taguwa S et al (2012) Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus. Glycoconj J 29:211–220PubMedCrossRefGoogle Scholar
  44. 44.
    Fechtner T, Stallmann S, Moelleken K, Meyer KL, Hegemann JH (2013) Characterization of the interaction between the chlamydial adhesin OmcB and the human host cell. J Bacteriol 195:5323–5333PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    O’Callaghan D, Vergunst A (2010) Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 13:79–85PubMedCrossRefGoogle Scholar
  46. 46.
    Dorer MS, Isberg RR (2006) Non-vertebrate hosts in the analysis of host-pathogen interactions. Microbes Infect 8:1637–1646PubMedCrossRefGoogle Scholar
  47. 47.
    Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874PubMedCrossRefGoogle Scholar
  48. 48.
    Lee JS, Chien CB (2004) When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 5:923–935PubMedCrossRefGoogle Scholar
  49. 49.
    Nakato H, Kimata K (2002) Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim Biophys Acta 1573:312–318PubMedCrossRefGoogle Scholar
  50. 50.
    Nishihara S (2010) Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: Identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol 480:323–351PubMedCrossRefGoogle Scholar
  51. 51.
    Brown JR, Crawford BE, Esko JD (2007) Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 42:481–515PubMedCrossRefGoogle Scholar
  52. 52.
    Forsberg E, Pejler G, Ringvall M et al (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776PubMedCrossRefGoogle Scholar
  53. 53.
    Pallerla SR, Lawrence R, Lewejohann L et al (2008) Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem 283:16885–16894PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Sugaya N, Habuchi H, Nagai N, Ashikari-Hada S, Kimata K (2008) 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. J Biol Chem 283:10366–10376PubMedCrossRefGoogle Scholar
  55. 55.
    Shworak NW, HajMohammadi S, de Agostini AI, Rosenberg RD (2002) Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J 19:355–361PubMedCrossRefGoogle Scholar
  56. 56.
    Alexander CM, Reichsman F, Hinkes MT et al (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25:329–332PubMedCrossRefGoogle Scholar
  57. 57.
    Reizes O, Lincecum J, Wang Z et al (2001) Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 106:105–116PubMedCrossRefGoogle Scholar
  58. 58.
    Echtermeyer F, Streit M, Wilcox-Adelman S et al (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Jen YH, Musacchio M, Lander AD (2009) Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev 4:33PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Cano-Gauci DF, Song HH, Yang H et al (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Allen NJ, Bennett ML, Foo LC et al (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Abrink M, Grujic M, Pejler G (2004) Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem 279:40897–40905PubMedCrossRefGoogle Scholar
  63. 63.
    Li Q, Olsen BR (2004) Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am J Pathol 165:415–424PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y (2003) Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302:1044–1046PubMedCrossRefGoogle Scholar
  65. 65.
    Wang L, Fuster M, Sriramarao P, Esko JD (2005) Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6:902–910PubMedCrossRefGoogle Scholar
  66. 66.
    Stanford KI, Wang L, Castagnola J et al (2010) Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem 285:286–294PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Liu D, Shriver Z, Venkataraman G, El Shabrawi Y, Sasisekharan R (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci U S A 99:568–573PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Avirutnan P, Zhang L, Punyadee N et al (2007) Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3:1798–1812CrossRefGoogle Scholar
  69. 69.
    Schowalter RM, Pastrana DV, Buck CB (2011) Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog 7:e1002161PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Hu YP, Lin SY, Huang CY et al (2011) Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction. Nat Chem 3:557–563PubMedCrossRefGoogle Scholar
  71. 71.
    Bucior I, Pielage JF, Engel JN (2012) Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog 8:e1002616PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Yabushita H, Noguchi Y, Habuchi H et al (2002) Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture. Glycobiology 12:345–351PubMedCrossRefGoogle Scholar
  73. 73.
    Love DC, Esko JD, Mosser DM (1993) A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans. J Cell Biol 123:759–766PubMedCrossRefGoogle Scholar
  74. 74.
    Oliveira FO Jr, Alves CR, Calvet CM et al (2008) Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microb Pathog 44:329–338PubMedCrossRefGoogle Scholar
  75. 75.
    Kaneider NC, Djanani A, Wiedermann CJ (2007) Heparan sulfate proteoglycan-involving immunomodulation by cathelicidin antimicrobial peptides LL-37 and PR-39. ScientificWorldJournal 7:1832–1838PubMedCrossRefGoogle Scholar
  76. 76.
    Baranska-Rybak W, Sonesson A, Nowicki R, Schmidtchen A (2006) Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids. J Antimicrob Chemother 57:260–265PubMedCrossRefGoogle Scholar
  77. 77.
    Bergsson G, Reeves EP, McNally P et al (2009) LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol 183:543–551PubMedCrossRefGoogle Scholar
  78. 78.
    Wu H, Monroe DM, Church FC (1995) Characterization of the glycosaminoglycan-binding region of lactoferrin. Arch Biochem Biophys 317:85–92PubMedCrossRefGoogle Scholar
  79. 79.
    Zou S, Magura CE, Hurley WL (1992) Heparin-binding properties of lactoferrin and lysozyme. Comp Biochem Physiol B 103:889–895PubMedGoogle Scholar
  80. 80.
    Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196PubMedGoogle Scholar
  81. 81.
    Travis SM, Anderson NN, Forsyth WR et al (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168PubMedCrossRefGoogle Scholar
  83. 83.
    Hume EB, Cole N, Khan S et al (2005) A Staphylococcus aureus mouse keratitis topical infection model: cytokine balance in different strains of mice. Immunol Cell Biol 83:294–300PubMedCrossRefGoogle Scholar
  84. 84.
    Girgis DO, Sloop GD, Reed JM, O’Callaghan RJ (2004) Susceptibility of aged mice to Staphylococcus aureus keratitis. Curr Eye Res 29:269–275PubMedCrossRefGoogle Scholar
  85. 85.
    Inoue Y, Nagasawa K (1976) Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. Carbohydr Res 46:87–95PubMedCrossRefGoogle Scholar
  86. 86.
    Ishihara M, Kariya Y, Kikuchi H, Minamisawa T, Yoshida K (1997) Importance of 2-O-sulfate groups of uronate residues in heparin for activation of FGF-1 and FGF-2. J Biochem 121:345–349PubMedCrossRefGoogle Scholar
  87. 87.
    Kariya Y, Kyogashima M, Suzuki K et al (2000) Preparation of completely 6-O-desulfated heparin and its ability to enhance activity of basic fibroblast growth factor. J Biol Chem 275:25949–25958PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang L, Lawrence R, Frazier BA, Esko JD (2006) CHO glycosylation mutants: proteoglycans. Methods Enzymol 416:205–221PubMedCrossRefGoogle Scholar
  89. 89.
    Axelsson J, Xu D, Kang BN et al (2012) Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 120:1742–1751PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedCrossRefGoogle Scholar
  91. 91.
    Porsche R, Brenner ZR (1999) Allergy to protamine sulfate. Heart Lung 28:418–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Respiratory DiseasesChildren’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Division of Newborn MedicineChildren’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations