Heparan Sulfate Modulates Slit3-Induced Endothelial Cell Migration

  • Hong Qiu
  • Wenyuan Xiao
  • Jingwen Yue
  • Lianchun WangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)


Heparan sulfate is a long, linear polysaccharide with sulfation modifications and belongs to the glycosaminoglycan family. Our recent studies elucidated that the axon guidance molecule Slit3 is a new heparan sulfate-binding protein and a novel angiogenic factor by interacting with its cognate receptor Robo4, which is specifically expressed in endothelial cells. Here we describe using heparan sulfate-deficient mouse endothelial cells to determine the co-reception function of heparan sulfate in Slit3-induced endothelial cell migration in a Boyden chamber trans-well migration assay.

Key words

Heparan sulfate Endothelial cell Migration Slit3 Robo4 Angiogenesis 



This work was supported by grants from NIH R01HL093339 (L.W.) and RR005351/GM103390 (L.W.).


  1. 1.
    Sarrazin S, Lamanna WC, Esko JD (2011) Cold Spring Harb Perspect Biol 3(7)Google Scholar
  2. 2.
    Wang L, Fuster M, Sriramarao P, Esko JD (2005) Nat Immunol 6:902–910PubMedCrossRefGoogle Scholar
  3. 3.
    Fuster MM, Wang L, Castagnola J, Sikora L, Reddi K, Lee PH, Radek KA, Schuksz M, Bishop JR, Gallo RL, Sriramarao P, Esko JD (2007) J Cell Biol 177:539–549PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wijelath E, Namekata M, Murray J, Furuyashiki M, Zhang S, Coan D, Wakao M, Harris RB, Suda Y, Wang L, Sobel M (2010) J Cell Biochem 111:461–468PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zhang B, Xiao WY, Qiu H, Zhang FM, Moniz HA, Condac E, Gutierrez-Sanchez G, Heiss C, Clugston RD, Azadi P, Greer JJ, Bergmann C, Moremen KW, Li D, Linhardt RJ, Esko JD, Wang L (2013) J Clin Invest 124:209–221Google Scholar
  6. 6.
    Qiu H, Jiang JL, Liu M, Huang X, Ding SJ, Wang L (2013) Mol Cell Proteomics 12:2160–2173PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Carmeliet P, Tessier-Lavigne M (2005) Nature 436:193–200PubMedCrossRefGoogle Scholar
  8. 8.
    Jaworski A, Tessier-Lavigne M (2012) Nat Neurosci 15:367–369PubMedCrossRefGoogle Scholar
  9. 9.
    Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M (1999) Cell 96:771–784PubMedCrossRefGoogle Scholar
  10. 10.
    Fukuhara N, Howitt JA, Hussain SA, Hohenester E (2008) J Biol Chem 283:16226–16234PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hu H (2001) Nat Neurosci 4:695–701PubMedCrossRefGoogle Scholar
  12. 12.
    Wong K, Park HT, Wu JY, Rao Y (2002) Curr Opin Genet Dev 12:583–591PubMedCrossRefGoogle Scholar
  13. 13.
    Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY (2003) Dev Biol 261:251–267PubMedCrossRefGoogle Scholar
  14. 14.
    Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R, Sharma AS, Kitajewski JK, Heath VL, Bicknell R (2009) FASEB J 23:513–522PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L (2009) Blood 114:4300–4309PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Condac E, Strachan H, Gutierrez-Sanchez G, Brainard B, Giese C, Heiss C, Johnson D, Azadi P, Bergmann C, Orlando R, Esmon CT, Harenberg J, Moremen K, Wang L (2012) Glycobiology 22:1183–1192PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hong Qiu
    • 1
  • Wenyuan Xiao
    • 1
  • Jingwen Yue
    • 1
  • Lianchun Wang
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research CenterUniversity of GeorgiaAthensUSA

Personalised recommendations