Advertisement

A Strategic Approach to Identification of Selective Inhibitors of Cancer Stem Cells

  • Nirmita Patel
  • Somesh Baranwal
  • Bhaumik B. PatelEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

Cancer stem-like cells (CSC) have been implicated in resistance to conventional chemotherapy as well as invasion and metastasis resulting in tumor relapse in majority of epithelial cancers including colorectal cancer. Hence, targeting CSC by small molecules is likely to improve therapeutic outcomes. Glycosaminoglycans (GAGs) are long linear polysaccharide molecules with varying degrees of sulfation that allows specific GAG-protein interaction which plays a key role in regulating cancer hallmarks such as cellular growth, angiogenesis, and immune modulation. However, identifying selective CSC-targeting GAG mimetic has been marred by difficulties associated with isolating and enriching CSC in vitro. Herein, we discuss two distinct methods, spheroid growth and EMT-transformed cells, to enrich CSC and set up medium- and high-throughput screen to identify selective CSC-targeting agents.

Key words

Cancer stem cells MTT Colonosphere assay EMT Selective anti-CSC agents 

Notes

Acknowledgements

This work was supported by VA Merit Award to B.B.P.

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30PubMedCrossRefGoogle Scholar
  2. 2.
    Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45(8):872–877PubMedCrossRefGoogle Scholar
  3. 3.
    Clarke MF et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344PubMedCrossRefGoogle Scholar
  4. 4.
    Ricci-Vitiani L et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115PubMedCrossRefGoogle Scholar
  5. 5.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850PubMedCrossRefGoogle Scholar
  6. 6.
    Zhao C et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRefGoogle Scholar
  8. 8.
    Piccirillo SG et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120):761–765PubMedCrossRefGoogle Scholar
  9. 9.
    Mishra L, Derynck R, Mishra B (2005) Transforming growth factor-beta signaling in stem cells and cancer. Science 310(5745):68–71PubMedCrossRefGoogle Scholar
  10. 10.
    Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A et al (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, NYGoogle Scholar
  11. 11.
    Tumova S, Woods A, Couchman JR (2000) Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol 32(3):269–288PubMedCrossRefGoogle Scholar
  12. 12.
    Yip GW, Smollich M, Gotte M (2006) Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 5(9):2139–2148PubMedCrossRefGoogle Scholar
  13. 13.
    Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta PB et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659PubMedCrossRefGoogle Scholar
  15. 15.
    Yi SY et al (2013) Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev 39(3):290–296PubMedCrossRefGoogle Scholar
  16. 16.
    Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21(5):299–310PubMedCrossRefGoogle Scholar
  17. 17.
    Kanwar SS et al (2010) The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer 9:212PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Dontu G et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kanwar SS et al (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28(4):827–838PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Yu Y et al (2009) Elimination of colon cancer stem-like cells by the combination of curcumin and FOLFOX. Transl Oncol 2(4):321–328PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kong D et al (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel) 3(1):716–729CrossRefGoogle Scholar
  22. 22.
    Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Xia H et al (2010) miR-200a regulates epithelial-mesenchymal to stem-like transition via ZEB2 and beta-catenin signaling. J Biol Chem 285(47):36995–37004PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nirmita Patel
    • 1
  • Somesh Baranwal
    • 1
    • 2
  • Bhaumik B. Patel
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Hunter Holmes McGuire VA Medical CenterRichmondUSA
  2. 2.Department of Internal MedicineVirginia Commonwealth UniversityRichmondUSA
  3. 3.Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA
  4. 4.Division of Hematology and Oncology, Department of MedicineVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations