Genetic Approaches in the Study of Heparan Sulfate Functions in Drosophila

  • Masahiko Takemura
  • Hiroshi NakatoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)


Several classes of heparan sulfate proteoglycan (HSPG) core proteins and all HS biosynthetic/modifying enzymes are evolutionarily conserved from human to Drosophila melanogaster. This genetically tractable model offers highly sophisticated techniques to manipulate gene function in a spatially and temporally controlled manner. Thus, Drosophila has been a powerful system to explore the functions of HSPGs in vivo. In this chapter, we will introduce two genetic techniques available in Drosophila: TARGET (temporal and regional gene expression targeting) and MARCM (mosaic analysis with a repressible cell marker).

Key words

Drosophila melanogaster HSPG GAL4/UAS TARGET MARCM 



We are grateful to Daniel Levings and Pui Choi for helpful comments to the manuscript. The authors are supported by Japan Society for the Promotion of Science (to M. T.) and National Institutes of Health Grant R01 HD042769 (to H. N.).


  1. 1.
    Spring J, Paine-Saunders SE, Hynes RO et al (1994) Drosophila syndecan: conservation of a cell-surface heparan sulfate proteoglycan. Proc Natl Acad Sci U S A 91:3334–3338PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Nakato H, Futch TA, Selleck SB (1995) The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121:3687–3702PubMedGoogle Scholar
  3. 3.
    Khare N, Baumgartner S (2000) Dally-like protein, a new Drosophila glypican with expression overlapping with wingless. Mech Dev 99:199–202PubMedCrossRefGoogle Scholar
  4. 4.
    Baeg GH, Lin X, Khare N et al (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128:87–94PubMedGoogle Scholar
  5. 5.
    Datta S, Kankel DR (1992) l(1)trol and l(1)devl, loci affecting the development of the adult central nervous system in Drosophila melanogaster. Genetics 130:523–537PubMedCentralPubMedGoogle Scholar
  6. 6.
    Voigt A, Pflanz R, Schäfer U et al (2002) Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev Dyn 224:403–412PubMedCrossRefGoogle Scholar
  7. 7.
    Park Y, Rangel C, Reynolds MM et al (2003) Drosophila Perlecan modulates FGF and Hedgehog signals to activate neural stem cell division. Dev Biol 253:247–257PubMedCrossRefGoogle Scholar
  8. 8.
    Kirkpatrick CA, Selleck SB (2007) Heparan sulfate proteoglycans at a glance. J Cell Sci 120:1829–1832PubMedCrossRefGoogle Scholar
  9. 9.
    Yan D, Lin X (2009) Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol. doi:  10.1101/cshperspect.a002493
  10. 10.
    Hayashi Y, Sexton TR, Dejima K et al (2012) Glypicans regulate JAK/STAT signaling and distribution of the unpaired morphogen. Development 139:4162–4171PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zhang Y, You J, Ren W et al (2013) Drosophila glypicans Dally and Dally-like are essential regulators for JAK/STAT signaling and unpaired distribution in eye development. Dev Biol 375:23–32PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  13. 13.
    McGuire SE, Le PT, Osborn AJ et al (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768PubMedCrossRefGoogle Scholar
  14. 14.
    McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE. doi: 10.1126/stke.2202004pl6 PubMedGoogle Scholar
  15. 15.
    Kleinschmit A, Takemura M, Dejima K et al (2013) Drosophila heparan sulfate 6-O-endosulfatase Sulf1 facilitates Wingless (Wg) protein degradation. J Biol Chem 288:5081–5089PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237PubMedGoogle Scholar
  17. 17.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  18. 18.
    Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254PubMedCrossRefGoogle Scholar
  19. 19.
    Biteau B, Hochmuth CE, Jasper H (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9:402–411PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589PubMedCrossRefGoogle Scholar
  21. 21.
    Selleck SB, Nakato H (2004) Functional dissection of glycoconjugates during development: lessons from the fruitfly. Trends Glycosci Glycotechnol 16:95–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations