Advertisement

Murine Models in the Evaluation of Heparan Sulfate-Based Anticoagulants

  • David GailaniEmail author
  • Qiufang Cheng
  • Ivan S. Ivanov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

Evaluating anticoagulants in animal thrombosis models is a standard component of preclinical drug testing. Mice are frequently used for these initial evaluations because a variety of thrombosis models have been developed and are well characterized in this species, and the animals are relatively inexpensive to maintain. Because mice have a natural resistance to forming intravascular thrombi, vessel injury is required to induce intravascular clot formation. Several methods have been established for inducing arterial or venous thrombosis in mice. For the purpose of testing heparin-based drugs, we adapted a well-established model in which thrombus formation in the carotid artery is induced by exposing the vessel to ferric chloride. For studying anticoagulant effects on venous thrombosis, we use a model in which the inferior vena cava is ligated and the size of the resulting clots is measured. The most common adverse effect of anticoagulation therapy is bleeding. The effect of heparin-based anticoagulants can be tested in mice in a simple tail bleeding assay.

Key words

Mouse Heparin Anticoagulant Arterial thrombosis Venous thrombosis Tail bleeding time 

Notes

Acknowledgment

The work described in this manuscript was supported by awards HL81326, HL58837, and HL107152 from the National Heart, Lung and Blood Institute.

References

  1. 1.
    Day SM, Reeve JL, Myers DD, Fay WP (2004) Murine thrombosis models. Thromb Haemost 92:486–494PubMedGoogle Scholar
  2. 2.
    Westrick RJ, Winn ME, Eitzman DT (2007) Murine models of vascular thrombosis. Arterioscler Thromb Vasc Biol 27:2079–2093PubMedCrossRefGoogle Scholar
  3. 3.
    Sachs UJ, Nieswandt B (2007) In vivo thrombus formation in murine models. Circ Res 100:979–991PubMedCrossRefGoogle Scholar
  4. 4.
    Furie B (2009) Pathogenesis of thrombosis. Hematology 2009:255–258CrossRefGoogle Scholar
  5. 5.
    Diaz JA, Obi AT, Myers DD Jr, Wrobleski SK, Henke PK, Mackman N, Wakefield TW (2012) Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 32:556–562PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hogan KA, Weiler H, Lord ST (2002) Mouse models of coagulation. Thromb Haemost 87:563–574PubMedGoogle Scholar
  7. 7.
    Emeis JJ, Jirouskova M, Muchitsch EM, Shet AS, Smyth SS, Johnson GJ (2007) A guide to murine coagulation factor structure, function, assays, and genetic alterations. J Thromb Haemost 5:670–679PubMedCrossRefGoogle Scholar
  8. 8.
    McManus MP, Gailani D (2012) Mouse models of coagulation factor deficiencies. In: Wang X (ed) Animal models of diseases: translational medicine perspective for drug discovery and development. Bentham Scientific Publishers, Sharjah, pp 67–121Google Scholar
  9. 9.
    Tollefsen DM, Zhang L (2013) Heparin and vascular proteoglycans. In: Marder VJ, Aird WC, Bennett JS, Schulman S, White GC (eds) Hemostasis and thrombosis, basic principles and clinical practice, 6th edn. Lippincott, Williams and Wilkins, Philadelphia, PA, pp 585–597Google Scholar
  10. 10.
    Kung SH, Hagstrom JN, Cass D, Tai SJ, Lin HF, Stafford DW, High KA (1998) Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood 91:784–790PubMedGoogle Scholar
  11. 11.
    Geng Y, Verhamme IM, Smith SB, Sun MF, Matafonov A, Cheng Q, Smith SA, Morrissey JH, Gailani D (2013) The dimeric structure of factor XI and zymogen activation. Blood 121:3962–3969PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Renné T, Pozgajová M, Grüner S, Schuh K, Pauer HU, Burfeind P, Gailani D, Nieswandt B (2005) Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 202:271–281PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Carcao M, Moorehead P, Lillicrap D (2013) Hemophilia A and B. In: Hoffman RH, Benz EJ, Silberstein LE, Heslop H, Weitz JI, Snastasi J (eds) Hematology, basic principles and practice, 6th edn. Saunders-Elsevier, Philadelphia, PA, pp 1940–1960Google Scholar
  14. 14.
    Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW (1997) A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 90:3962–3966PubMedGoogle Scholar
  15. 15.
    Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang SH, Reddick RL, Burkey B, Maeda N (1994) Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J Clin Invest 94:937–945PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb Vasc Biol 14:133–140CrossRefGoogle Scholar
  18. 18.
    Lim W (2013) Venous thromboembolism. In: Hoffman RH, Benz EJ, Silberstein LE, Heslop H, Weitz JI, Snastasi J (eds) Hematology, basic principles and practice, 6th edn. Saunders-Elsevier, Philadelphia, PA, pp 2039–2047Google Scholar
  19. 19.
    Eckly A, Hechler B, Freund M, Zerr M, Cazenave JP, Lanza F, Mangin PH, Gachet C (2011) Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost 9:779–789PubMedCrossRefGoogle Scholar
  20. 20.
    Owens AP 3rd, Lu Y, Whinna HC, Gachet C, Fay WP, Mackman N (2011) Towards a standardization of the murine ferric chloride-induced carotid arterial thrombosis model. J Thromb Haemost 9:1862–1863PubMedCrossRefGoogle Scholar
  21. 21.
    Barr JD, Chauhan AK, Schaeffer GV, Hansen JK, Motto DG (2013) Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood 121:3733–3741PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wang X, Xu L (2005) An optimized murine model of ferric chloride-induced arterial thrombosis for thrombosis research. Thromb Res 115:95–100PubMedCrossRefGoogle Scholar
  23. 23.
    Wang X, Cheng Q, Xu L, Feuerstein GZ, Hsu MY, Smith PL, Seiffert DA, Schumacher WA, Ogletree ML, Gailani D (2005) Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. J Thromb Haemost 3:695–702PubMedCrossRefGoogle Scholar
  24. 24.
    Wang L, Miller C, Swarthout RF, Rao M, Mackman N, Taubman MB (2009) Vascular smooth muscle-derived tissue factor is critical for arterial thrombosis after ferric chloride-induced injury. Blood 113:705–713PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Cheng Q, Tucker EI, Pine MS, Sisler I, Matafonov A, Sun MF, White-Adams TC, Smith SA, Hanson SR, McCarty OJ, Renné T, Gruber A, Gailani D (2010) A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 116:3981–3989PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Revenko AS, Gao D, Crosby JR, Bhattacharjee G, Zhao C, May C, Gailani D, Monia BP, MacLeod AR (2011) Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood 118:5302–5311PubMedCrossRefGoogle Scholar
  27. 27.
    Weitz JI (2013) Antithrombotic drugs. In: Hoffman RH, Benz EJ, Silberstein LE, Heslop H, Weitz JI, Snastasi J (eds) Hematology, basic principles and practice, 6th edn. Saunders-Elsevier, Philadelphia, PA, pp 2102–2119Google Scholar
  28. 28.
    Schumacher WA, Luettgen JM, Quan ML, Seiffert DA (2010) Inhibition of factor XIa as a new approach to anticoagulation. Arterioscler Thromb Vasc Biol 30:388–392PubMedCrossRefGoogle Scholar
  29. 29.
    Löwenberg EC, Meijers JC, Monia BP, Levi M (2010) Coagulation factor XI as a novel target for antithrombotic treatment. J Thromb Haemost 8:2349–2357PubMedCrossRefGoogle Scholar
  30. 30.
    Woodruff RS, Sullenger B, Becker RC (2011) The many faces of the contact pathway and their role in thrombosis. J Thromb Thromb 3:9–20CrossRefGoogle Scholar
  31. 31.
    Al-Horani RA, Ponnusamy P, Mehta AY, Gailani D, Desai UR (2013) Sulfated Pentagalloylglucoside is a potent, allosteric, and selective inhibitor of factor XIa. J Med Chem 56:867–878PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Greene TK, Schiviz A, Hoellriegl W, Poncz M, Muchitsch EM, Animal Models Subcommittee of the Scientific And Standardization Committee Of The Isth (2010) Towards a standardization of the murine tail bleeding model. J Thromb Haemost 8:2820–2822PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Y, Jennings NL, Dart AM, Du X-J (2012) Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice. World J Exp Med 2:30–36PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Broze GJ Jr, Yin ZF, Lasky N (2001) A tail vein bleeding time model and delayed bleeding in hemophiliac mice. Thromb Haemost 85:747–748PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Hematology/OncologyVanderbilt UniversityNashvilleUSA

Personalised recommendations