Advertisement

Keratan Sulfate: Biosynthesis, Structures, and Biological Functions

  • Kenji UchimuraEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

Keratan sulfate is a glycosaminoglycan that has been investigated in the cornea and skeletal tissues for decades. Endoglycosidases and monoclonal antibodies specific for keratan sulfate have been developed. These materials have facilitated the analysis of keratan sulfate biosynthesis and structures. Likewise, they have expedited study of the biological roles of keratan sulfate in vitro and in vivo. It has been shown that keratan sulfate is also expressed in the central nervous system and functions as a regulator of neuronal regeneration/sprouting. Here, we describe methods to determine the enzymatic activity of GlcNAc6ST, which is involved in keratan sulfate biosynthesis, and to extract and prepare ocular keratan sulfate for a disaccharide composition analysis. Immunohistochemistry for an anti-keratan sulfate epitope in the brain is also described.

Key words

Keratan sulfate Sulfotransferase N-acetylglucosamine Galactose Immunohistochemistry Disaccharide analysis Enzymatic specificity 

Notes

Acknowledgements

Supported by Japanese Health and Labour Sciences Research Grants [H19-001 and H22-007], Grants-in-Aid from the Ministry of Education, Science, Sports and Culture [22790303 and 24590349, and for Scientific Research on Innovative Areas] and in part by the Takeda Science Foundation.

References

  1. 1.
    Meyer K, Linker A, Davidson EA et al (1953) The mucopolysaccharides of bovine cornea. J Biol Chem 205:611–616PubMedGoogle Scholar
  2. 2.
    Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10:951–958PubMedCrossRefGoogle Scholar
  3. 3.
    Funderburgh JL (2002) Keratan sulfate biosynthesis. IUBMB life 54:187–194PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Krusius T, Finne J, Margolis RK et al (1986) Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain. J Biol Chem 261:8237–8242PubMedGoogle Scholar
  5. 5.
    Margolis RK, Rauch U, Maurel P et al (1996) Neurocan and phosphacan: two major nervous tissue-specific chondroitin sulfate proteoglycans. Perspect Dev Neurobiol 3:273–290PubMedGoogle Scholar
  6. 6.
    Hoshino H, Foyez T, Ohtake-Niimi S et al (2014) KSGal6ST is essential for the 6-sulfation of galactose within keratan sulfate in early postnatal brain. J Histochem Cytochem 62(2):145–56. doi: 10.1369/0022155413511619 PubMedCrossRefGoogle Scholar
  7. 7.
    Tai GH, Huckerby TN, Nieduszynski IA (1996) Multiple non-reducing chain termini isolated from bovine corneal keratan sulfates. J Biol Chem 271:23535–23546PubMedCrossRefGoogle Scholar
  8. 8.
    Uchimura K, Muramatsu H, Kadomatsu K et al (1998) Molecular cloning and characterization of an N-acetylglucosamine-6-O-sulfotransferase. J Biol Chem 273:22577–22583PubMedCrossRefGoogle Scholar
  9. 9.
    Uchimura K, El-Fasakhany FM, Hori M et al (2002) Specificities of N-acetylglucosamine-6-O-sulfotransferases in relation to L-selectin ligand synthesis and tumor-associated enzyme expression. J Biol Chem 277:3979–3984PubMedCrossRefGoogle Scholar
  10. 10.
    Uchimura K, Gauguet JM, Singer MS et al (2005) A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol 6:1105–1113PubMedCrossRefGoogle Scholar
  11. 11.
    Fujiwara M, Kobayashi M, Hoshino H et al (2012) Expression of long-form N-acetylglucosamine-6-O-sulfotransferase 1 in human high endothelial venules. J Histochem Cytochem 60:397–407PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Uchimura K, Rosen SD (2006) Sulfated L-selectin ligands as a therapeutic target in chronic inflammation. Trends Immunol 27:559–565PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang H, Muramatsu T, Murase A et al (2006) N-Acetylglucosamine 6-O-sulfotransferase-1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury. Glycobiology 16:702–710PubMedCrossRefGoogle Scholar
  14. 14.
    Ito Z, Sakamoto K, Imagama S et al (2010) N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci 30:5937–5947PubMedCrossRefGoogle Scholar
  15. 15.
    Imagama S, Sakamoto K, Tauchi R et al (2011) Keratan sulfate restricts neural plasticity after spinal cord injury. J Neurosci 31:17091–17102PubMedCrossRefGoogle Scholar
  16. 16.
    Akama TO, Nishida K, Nakayama J et al (2000) Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat Genet 26:237–241PubMedCrossRefGoogle Scholar
  17. 17.
    Habuchi O, Hirahara Y, Uchimura K et al (1996) Enzymatic sulfation of galactose residue of keratan sulfate by chondroitin 6-sulfotransferase. Glycobiology 6:51–57PubMedCrossRefGoogle Scholar
  18. 18.
    Fukuta M, Inazawa J, Torii T et al (1997) Molecular cloning and characterization of human keratan sulfate Gal-6-sulfotransferase. J Biol Chem 272:32321–32328PubMedCrossRefGoogle Scholar
  19. 19.
    Torii T, Fukuta M, Habuchi O (2000) Sulfation of sialyl N-acetyllactosamine oligosaccharides and fetuin oligosaccharides by keratan sulfate Gal-6-sulfotransferase. Glycobiology 10:203–211PubMedCrossRefGoogle Scholar
  20. 20.
    Patnode ML, Yu SY, Cheng CW et al (2013) KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology 23:381–394PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Andrews PW, Banting G, Damjanov I et al (1984) Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma 3:347–361PubMedCrossRefGoogle Scholar
  22. 22.
    Caterson B, Christner JE, Baker JR (1983) Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem 258(14):8848–8854PubMedGoogle Scholar
  23. 23.
    Funderburgh JL, Funderburgh ML, Rodrigues MM et al (1990) Altered antigenicity of keratan sulfate proteoglycan in selected corneal diseases. Invest Ophthalmol Vis Sci 31:419–428PubMedGoogle Scholar
  24. 24.
    Glant TT, Mikecz K, Roughley PJ et al (1986) Age-related changes in protein-related epitopes of human articular-cartilage proteoglycans. Biochem J 236:71–75PubMedCentralPubMedGoogle Scholar
  25. 25.
    Magro G, Perissinotto D, Schiappacassi M et al (2003) Proteomic and postproteomic characterization of keratan sulfate-glycanated isoforms of thyroglobulin and transferrin uniquely elaborated by papillary thyroid carcinomas. Am J Pathol 163:183–196PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kawabe K, Tateyama D, Toyoda H et al (2013) A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keratan sulfate lacking oversulfated structures. Glycobiology 23:322–336PubMedCrossRefGoogle Scholar
  27. 27.
    Funderburgh JL, Caterson B, Conrad GW (1987) Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem 262:11634–11640PubMedGoogle Scholar
  28. 28.
    Poole CA, Glant TT, Schofield JR (1991) Chondrons from articular cartilage. (IV). Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons. J Histochem Cytochem 39(9):1175–1187PubMedCrossRefGoogle Scholar
  29. 29.
    Poon CJ, Plaas AH, Keene DR et al (2005) N-linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity. J Biol Chem 280:23615–23621PubMedCrossRefGoogle Scholar
  30. 30.
    Bertolotto A, Caterson B, Canavese G et al (1993) Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain. J Histochem Cytochem 41:481–487PubMedCrossRefGoogle Scholar
  31. 31.
    Jander S, Schroeter M, Fischer J et al (2000) Differential regulation of microglial keratan sulfate immunoreactivity by proinflammatory cytokines and colony-stimulating factors. Glia 30:401–410PubMedCrossRefGoogle Scholar
  32. 32.
    Jones LL, Tuszynski MH (2002) Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J Neurosci 22:4611–4624PubMedGoogle Scholar
  33. 33.
    Zhang H, Uchimura K, Kadomatsu K (2006) Brain keratan sulfate and glial scar formation. Ann N Y Acad Sci 1086:81–90PubMedCrossRefGoogle Scholar
  34. 34.
    Manuelidis L, Fritch W, Xi YG (1997) Evolution of a strain of CJD that induces BSE-like plaques. Science 277:94–98PubMedCrossRefGoogle Scholar
  35. 35.
    Miao J, Vitek MP, Xu F et al (2005) Reducing cerebral microvascular amyloid-beta protein deposition diminishes regional neuroinflammation in vasculotropic mutant amyloid precursor protein transgenic mice. J Neurosci 25:6271–6277PubMedCrossRefGoogle Scholar
  36. 36.
    Vidal R, Barbeito AG, Miravalle L et al (2009) Cerebral amyloid angiopathy and parenchymal amyloid deposition in transgenic mice expressing the Danish mutant form of human BRI2. Brain Pathol 19:58–68PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hirano K, Ohgomori T, Kobayashi K et al (2013) Ablation of keratan sulfate accelerates early phase pathogenesis of ALS. PLoS One 8:e66969PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Meyer-Puttlitz B, Milev P, Junker E et al (1995) Chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of nervous tissue: developmental changes of neurocan and phosphacan. J Neurochem 65:2327–2337PubMedCrossRefGoogle Scholar
  39. 39.
    Miller B, Sheppard AM, Pearlman AL (1997) Developmental expression of keratan sulfate-like immunoreactivity distinguishes thalamic nuclei and cortical domains. J Comp Neurol 380:533–552PubMedCrossRefGoogle Scholar
  40. 40.
    Toyoda H, Kinoshita-Toyoda A, Fox B et al (2000) Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem 275:21856–21861PubMedCrossRefGoogle Scholar
  41. 41.
    Patnode ML, Cheng CW, Chou CC et al (2013) Galactose 6-o-sulfotransferases are not required for the generation of siglec-f ligands in leukocytes or lung tissue. J Biol Chem 288:26533–26545PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiochemistryNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations