Advertisement

Glycosaminoglycan–Protein Interaction Studies Using Fluorescence Spectroscopy

  • Rio S. Boothello
  • Rami A. Al-Horani
  • Umesh R. DesaiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

Fluorescence spectroscopy is a quantitative analytical tool that has been extensively used to provide structural and dynamical information on GAG–protein complexes. It possesses major advantages including high sensitivity, relative ease of applicability, and wide range of available fluorescence labels and probes. It has been applied to practically every protein–GAG system through the use of either intrinsic (e.g., Trp) or extrinsic (e.g., a non-covalent fluorophore) probe. For studies involving GAGs, it forms the basis for measurement of dissociation constant of complexes and the stoichiometry of binding, which helps elucidate many other thermodynamic and/or mechanistic parameters. We describe the step-by-step procedure to measure the affinity of GAG–protein complexes, parse the ionic and nonionic components of the free energy of binding, and identify the site of GAG binding through competitive binding experiments.

Key words

Activation Binding affinity Competitive binding Fluorescence spectroscopy GAG–protein interactions Inhibition Serpins 

Notes

Acknowledgements

This work was supported by the grants HL090586 and HL107152 from the National Institutes of Health.

References

  1. 1.
    Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72: 455–482PubMedCrossRefGoogle Scholar
  2. 2.
    Ori A, Wilkinson MC, Fernig DG (2011) A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J Biol Chem 286:19892–19904PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Capila I, Linhardt RJ (2002) Heparin–protein interactions. Angew Chem Int Ed 41:391–412CrossRefGoogle Scholar
  4. 4.
    Henry BL, Desai UR (2010) Anticoagulants: drug discovery and development. In: Rotella D, Abraham DJ (eds) Burger’s medicinal chemistry, 7th edn. Wiley, New York, pp 365–408Google Scholar
  5. 5.
    Rein CM, Desai UR, Church FC (2011) Serpin–glycosaminoglycan interaction. Methods Enzymol 501:105–137PubMedCrossRefGoogle Scholar
  6. 6.
    Olson ST, Shore JD (1981) Binding of high affinity heparin to antithrombin. III. Characterization of the protein fluorescence enhancement. J Biol Chem 256:11065–11072PubMedGoogle Scholar
  7. 7.
    Huntington JA, Olson ST, Fan B, Gettins PGW (1996) Mechanism of heparin activation of antithrombin. Evidence for reactive center loop preinsertion with expulsion upon heparin binding. Biochemistry 35:8495–8503PubMedCrossRefGoogle Scholar
  8. 8.
    Olson ST, Halvorson HR, Björk I (1991) Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem 266:6342–6352PubMedGoogle Scholar
  9. 9.
    Desai UR, Petitou M, Björk I, Olson ST (1998) Mechanism of heparin activation of antithrombin: role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem 273:7478–7487PubMedCrossRefGoogle Scholar
  10. 10.
    Meagher JL, Olson ST, Gettins PG (2000) Critical role of the linker region between helix D and strand 2A in heparin activation of antithrombin. J Biol Chem 275:2698–2704PubMedCrossRefGoogle Scholar
  11. 11.
    Richard B, Swanson R, Olson ST (2009) The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation. J Biol Chem 284:27054–27064PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    O’Keeffe D, Olson ST, Gasiunas N, Gallagher J, Baglin TP, Huntington JA (2004) The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. J Biol Chem 279:50267–50273PubMedCrossRefGoogle Scholar
  13. 13.
    Li W, Adams TE, Kjellberg M, Stenflo J, Huntington JA (2007) Structure of native protein c inhibitor provides insight into its multiple functions. J Biol Chem 282:13759–13768PubMedCrossRefGoogle Scholar
  14. 14.
    Arcone R, Chinali A, Pozzi N, Parafati M, Maset F, Pietropaolo C, Filippis VD (2009) Conformational and biochemical characterization of a biologically active rat recombinant protease nexin-1 expressed in E. coli. Biochim Biophys Acta 1794:602–614PubMedCrossRefGoogle Scholar
  15. 15.
    Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, Beck-Sickinger AG, Huster D, Pisabarro MT (2012) Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology 22:134–145PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rek A, Brandner B, Geretti E, Kungl AJ (2009) A biophysical insight into the RANTES glycosaminoglycan interaction. Biochim Biophys Acta 1794:577–582PubMedCrossRefGoogle Scholar
  17. 17.
    Wilson CJ, Copeland RA (1997) Spectroscopic characterization of arrestin interactions with competitive ligands: study of heparin and phytic acid binding. J Protein Chem 16:755–763PubMedCrossRefGoogle Scholar
  18. 18.
    Loscalzo J, Melnick B, Handin RI (1985) The interaction of platelet factor four and glycosaminoglycans. Arch Biochem Biophys 240: 446–455PubMedCrossRefGoogle Scholar
  19. 19.
    Li LY, Seddon AP (1994) Fluorospectrometric analysis of heparin interaction with fibroblast growth factors. Growth Factors 11:1–7PubMedCrossRefGoogle Scholar
  20. 20.
    Dong J, Peters-Libeu CA, Weisgraber KH, Segelke BW, Rupp B, Capila I, Hernáiz MJ, LeBrun LA, Linhardt RJ (2001) Interaction of the N-terminal domain of apolipoprotein E4 with heparin. Biochemistry 40:2826–2834PubMedCrossRefGoogle Scholar
  21. 21.
    Faller B, Mely Y, Gerard D, Bieth JG (1992) Heparin-induced conformational change and activation of mucus proteinase inhibitor. Biochemistry 31:8285–8290PubMedCrossRefGoogle Scholar
  22. 22.
    Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 285:3722–3729PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kamerzell TJ, Joshi SB, McClean D, Peplinskie L, Toney K, Papac D, Li M, Middaugh CR (2007) Parathyroid hormone is a heparin/polyanion binding protein: binding energetics and structure modification. Protein Sci 16: 1193–1203PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Fedunová D, Antalík M (1998) Studies on interactions between metmyoglobin and heparin. Gen Physiol Biophys 17:117–131PubMedGoogle Scholar
  25. 25.
    Streusand VJ, Björk I, Gettins PGW, Petitou M, Olson ST (1995) Mechanism of acceleration of antithrombin-proteinase reactions by low affinity heparin. J Biol Chem 270: 9043–9051PubMedCrossRefGoogle Scholar
  26. 26.
    Lin P, Sinha U, Betz A (2001) Antithrombin binding of low molecular weight heparins and inhibition of factor Xa. Biochim Biophys Acta 1526:105–113PubMedCrossRefGoogle Scholar
  27. 27.
    Jairajpuri MA, Lu A, Desai U, Olson ST, Bjork I, Bock SC (2003) Antithrombin III phenylalanines 122 and 121 contribute to its high affinity for heparin and its conformational activation. J Biol Chem 278:15941–15950PubMedCrossRefGoogle Scholar
  28. 28.
    Monien BH, Krishnasamy C, Olson ST, Desai UR (2005) Importance of tryptophan 49 of antithrombin in heparin binding and conformational activation. Biochemistry 44:11660–11668PubMedCrossRefGoogle Scholar
  29. 29.
    Schedin-Weiss S, Arocas V, Bock SC, Olson ST, Björk I (2002) Specificity of the basic side chains of Lys114, Lys125, and Arg129 of antithrombin in heparin binding. Biochemistry 41:12369–12376PubMedCrossRefGoogle Scholar
  30. 30.
    Olson ST, Frances-Chmura AM, Swanson R, Björk I, Zettlmeissl G (1997) Effect of individual carbohydrate chains of recombinant antithrombin on heparin affinity and on the generation of glycoforms differing in heparin affinity. Arch Biochem Biophys 341:212–221PubMedCrossRefGoogle Scholar
  31. 31.
    Meagher JL, Beechem JM, Olson ST, Gettins PGW (1998) Deconvolution of the fluorescence emission spectrum of human antithrombin and identification of the tryptophan residues that are responsive to heparin binding. J Biol Chem 273:23283–23289PubMedCrossRefGoogle Scholar
  32. 32.
    Futamura A, Beechem JM, Gettins PGW (2001) Conformational equilibrium of the reactive center loop of antithrombin examined by steady state and time-resolved fluorescence measurements: consequences for the mechanism of factor Xa inhibition by antithrombin-heparin complexes. Biochemistry 40:6680–6687PubMedCrossRefGoogle Scholar
  33. 33.
    Piepkorn MW (1981) Dansyl (5-dimethylaminonaphthalene-1-sulphonyl)-heparin binds antithrombin III and platelet factor 4 at separate sites. Biochem J 196:649–651PubMedCentralPubMedGoogle Scholar
  34. 34.
    Piepkorn MW, Lagunoff D, Schmer G (1980) Binding of heparin to antithrombin III: the use of dansyl and rhodamine labels. Arch Biochem Biophys 205:315PubMedCrossRefGoogle Scholar
  35. 35.
    Liaw PCY, Austin RC, Fredenburgh JC, Stafford AR, Weitz JI (1999) Comparison of heparin- and dermatan sulfate-mediated catalysis of thrombin inactivation by heparin cofactor II. J Biol Chem 274:27597–27604PubMedCrossRefGoogle Scholar
  36. 36.
    Mascotti DP, Lohman TM (1995) Thermodynamics of charged oligopeptide-heparin interactions. Biochemistry 34:2908–2915PubMedCrossRefGoogle Scholar
  37. 37.
    Olson ST, Björk I, Sheffer R, Craig PA, Shore JD, Choay J (1992) Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem 267:12528–12538PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rio S. Boothello
    • 1
  • Rami A. Al-Horani
    • 1
  • Umesh R. Desai
    • 1
    Email author
  1. 1.Department of Medicinal Chemistry and Institute for Structural Biology and Drug DiscoveryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations