Advertisement

Use of Flow Cytometry for Characterization and Fractionation of Cell Populations Based on Their Expression of Heparan Sulfate Epitopes

  • Rebecca J. Holley
  • Raymond A. Smith
  • Els M. A. van de Westerlo
  • Claire E. Pickford
  • C. L. R. MerryEmail author
  • Toin H. van Kuppevelt
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

The ability to characterize alterations in heparan sulfate (HS) structure during development or as a result of loss or mutation of one or more components of the HS biosynthetic pathway is essential for broad understanding of the effects these changes may have on cell/tissue function. The use of anti-HS antibodies provides an opportunity to study HS chain composition in situ, with a multitude of different antibodies having been generated that recognize subtle differences in HS patterning, with the number and positioning of sulfate groups influencing antibody binding affinity. Flow cytometry is a valuable technique to enable the rapid characterization of the changes in HS-specific antibody binding in situ, allowing multiple cell types to be directly compared. Additionally fluorescent-activated cell sorting (FACS) allows fractionation of cells based on their HS-epitope expression.

Key words

Flow cytometry FACS Heparan sulfate Glycosaminoglycan Phage-display scFv antibody 

Notes

Acknowledgements

This work is supported by a strategic award from the Medical Research Council (UK) and British Heart Foundation (G0902170), the Engineering and Physical Sciences Research Council (EP/H046070/1), the Dutch Cancer Society (2008-4058) and the Netherlands Institute of Regenerative medicine (2.5).

References

  1. 1.
    Ledin J, Staatz W, Li JP et al (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741PubMedCrossRefGoogle Scholar
  2. 2.
    Maccarana M, Sakura Y, Tawada A et al (1996) Domain structure of heparan sulfates from bovine organs. J Biol Chem 271:17804–17810PubMedCrossRefGoogle Scholar
  3. 3.
    David G, Bai XM, Van der Schueren B et al (1992) Developmental changes in heparan sulfate expression: in situ detection with mAbs. J Cell Biol 119:961–975PubMedCrossRefGoogle Scholar
  4. 4.
    van den Born J, Salmivirta K, Henttinen T et al (2005) Novel heparan sulfate structures revealed by monoclonal antibodies. J Biol Chem 280:20516–20523PubMedCrossRefGoogle Scholar
  5. 5.
    Dennissen MA, Jenniskens GJ, Pieffers M et al (2002) Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 277:10982–10986PubMedCrossRefGoogle Scholar
  6. 6.
    Jenniskens GJ, Oosterhof A, Brandwijk R et al (2000) Heparan sulfate heterogeneity in skeletal muscle basal lamina: demonstration by phage display-derived antibodies. J Neurosci 20:4099–4111PubMedGoogle Scholar
  7. 7.
    Smetsers TFCM, van de Westerlo EMA, ten Dam GB et al (2003) Localization and characterization of melanoma-associated glycosaminoglycans: differential expression of chondroitin and heparan sulfate epitopes in melanoma. Cancer Res 63:2965–2970PubMedGoogle Scholar
  8. 8.
    van de Westerlo EMA, Smetsers TFCM, Dennissen MABA et al (2002) Human single chain antibodies against heparin: selection, characterization, and effect on coagulation. Blood 99:2427–2433PubMedCrossRefGoogle Scholar
  9. 9.
    van Kuppevelt TH, Dennissen MA, van Venrooij WJ et al (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273:12960–12966PubMedCrossRefGoogle Scholar
  10. 10.
    Kurup S, Wijnhoven TJ, Jenniskens GJ et al (2007) Characterization of anti-heparan sulfate phage-display antibodies AO4B08 and HS4E4. J Biol Chem 282(29):21032–21042PubMedCrossRefGoogle Scholar
  11. 11.
    ten Dam GB, Kurup S, van de Westerlo EM et al (2006) 3-O-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3. J Biol Chem 281:4654–4662PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson CE, Crawford BE, Stavridis M et al (2007) Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells 25:1913–1923PubMedCrossRefGoogle Scholar
  13. 13.
    Hosono-Fukao T, Ohtake-Niimi S, Hoshino H et al (2012) Heparan sulfate subdomains that are degraded by Sulf accumulate in cerebral amyloid ss plaques of Alzheimer’s disease: evidence from mouse models and patients. Am J Pathol 180:2056–2067PubMedCrossRefGoogle Scholar
  14. 14.
    Smits NC, Shworak NW, Dekhuijzen PN et al (2010) Heparan sulfates in the lung: structure, diversity, and role in pulmonary emphysema. Anat Rec (Hoboken) 293:955–967CrossRefGoogle Scholar
  15. 15.
    Vallen MJ, Massuger LF, ten Dam GB et al (2012) Highly sulfated chondroitin sulfates, a novel class of prognostic biomarkers in ovarian cancer tissue. Gynecol Oncol 127:202–209PubMedCrossRefGoogle Scholar
  16. 16.
    Baldwin RJ, ten Dam GB, van Kuppevelt TH et al (2008) A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 26:3108–3118PubMedCrossRefGoogle Scholar
  17. 17.
    Lamanna WC, Baldwin RJ, Padva M et al (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J 400:63–73PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Merry CL, Bullock SL, Swan DC et al (2001) The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J Biol Chem 276:35429–35434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rebecca J. Holley
    • 1
    • 2
  • Raymond A. Smith
    • 2
  • Els M. A. van de Westerlo
    • 3
  • Claire E. Pickford
    • 2
  • C. L. R. Merry
    • 2
    Email author
  • Toin H. van Kuppevelt
    • 3
  1. 1.Wellcome Trust Centre for Cell Matrix Research, Faculty of Life SciencesUniversity of ManchesterManchesterUK
  2. 2.Stem Cell Glycobiology Group, School of MaterialsUniversity of ManchesterManchesterUK
  3. 3.Department of Biochemistry, Radboud Institute for Molecular Life SciencesRadboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations