Aggrecan: Approaches to Study Biophysical and Biomechanical Properties

  • Hadi Tavakoli Nia
  • Christine Ortiz
  • Alan GrodzinskyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)


Aggrecan, the most abundant extracellular proteoglycan in cartilage (~35 % by dry weight), plays a key role in the biophysical and biomechanical properties of cartilage. Here, we review several approaches based on atomic force microscopy (AFM) to probe the physical, mechanical, and structural properties of aggrecan at the molecular level. These approaches probe the response of aggrecan over a wide time (frequency) scale, ranging from equilibrium to impact dynamic loading. Experimental and theoretical methods are described for the investigation of electrostatic and fluid-solid interactions that are key mechanisms underlying the biomechanical and physicochemical functions of aggrecan. Using AFM-based imaging and nanoindentation, ultrastructural features of aggrecan are related to its mechanical properties, based on aggrecans harvested from human vs. bovine, immature vs. mature, and healthy vs. osteoarthritic cartilage.

Key words

Aggrecan Atomic force microscopy Nanomechanics Biophysics Ultrastructure Cartilage Extracellular matrix Dynamic modulus Elasticity Poroelasticity Viscoelasticity 



Supported by Whitaker Foundation Fellowship, National Science Foundation (grant CMMI-0758651), and National Institutes of Health (grant AR060331).


  1. 1.
    Maroudas A (1980) Physical chemistry of articular cartilage and the intervertebral disc. The Joints and Synovial Fluid 2:239–291CrossRefGoogle Scholar
  2. 2.
    Hardingham T, Fosang A (1992) Proteoglycans: many forms and many functions. FASEB J 6(3):861–870PubMedGoogle Scholar
  3. 3.
    Buschmann MD, Grodzinsky AJ (1995) A molecular-model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117(2):179–192PubMedCrossRefGoogle Scholar
  4. 4.
    Eisenberg SR, Grodzinsky AJ (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthop Res 3(2):148–159PubMedCrossRefGoogle Scholar
  5. 5.
    Bayliss MT, Ali SY (1978) Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem J 176:683–693PubMedCentralPubMedGoogle Scholar
  6. 6.
    Deutsch AJ, Midura RJ, Plaas AH (1995) Structure of chondroitin sulfate on aggrecan isolated from bovine tibial and costochondral growth plates. J Orthop Res 13(2):230–239PubMedCrossRefGoogle Scholar
  7. 7.
    Bay-Jensen A-C, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P, Qvist P, Karsdal MA (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 30(4):435–442PubMedCrossRefGoogle Scholar
  8. 8.
    Roughley PJ, White R (1980) Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem 255(1):217–224PubMedGoogle Scholar
  9. 9.
    Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C (2003) Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J Struct Biol 143(3):242–257PubMedCrossRefGoogle Scholar
  10. 10.
    Buckwalter J, Rosenberg L (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem 257(16):9830–9839PubMedGoogle Scholar
  11. 11.
    Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2):173–177PubMedCrossRefGoogle Scholar
  12. 12.
    Kopesky P, Lee H-Y, Vanderploeg E, Kisiday J, Frisbie D, Plaas A, Ortiz C, Grodzinsky A (2010) Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biol 29(5):427–438PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lee H-Y, Kopesky P, Plaas A, Sandy J, Kisiday J, Frisbie D, Grodzinsky A, Ortiz C (2010) Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. Osteoarthritis Cartilage 18(11):1477–1486PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lee H-Y, Han L, Roughley P, Grodzinsky AJ, Ortiz C (2012) Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains. J Struct Biol 181(3):264–273PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Dean D, Han L, Ortiz C, Grodzinsky AJ (2005) Nanoscale conformation and compressibility of cartilage aggrecan using microcontact printing and atomic force microscopy. Macromolecules 38(10):4047–4049CrossRefGoogle Scholar
  16. 16.
    Dean D, Han L, Grodzinsky AJ, Ortiz C (2006) Compressive nanomechanics of opposing aggrecan macromolecules. J Biomech 39:2555–2565PubMedCrossRefGoogle Scholar
  17. 17.
    Seog J, Dean D, Plaas A, Wong-Palms S, Grodzinsky A, Ortiz C (2002) Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules 35(14):5601–5615CrossRefGoogle Scholar
  18. 18.
    Seog J, Dean D, Rolauffs B, Wu T, Genzer J, Plaas AHK, Grodzinsky AJ, Ortiz C (2005) Nanomechanics of opposing glycosaminoglycan macromolecules. J Biomech 38(9):1789–1797PubMedCrossRefGoogle Scholar
  19. 19.
    Dean D (2005) Modeling and measurement of intermolecular interaction forces between cartilage ecm macromolecules. Doctoral dissertation, Massachusetts Institute of Technology, retrieved from DSpace.
  20. 20.
    Han L, Dean D, Ortiz C, Grodzinsky AJ (2007) Lateral nanomechanics of cartilage aggrecan macromolecules. Biophys J 92(4):1384–1398PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Han L, Dean D, Daher LA, Grodzinsky AJ, Ortiz C (2008) Cartilage aggrecan can undergo self-adhesion. Biophys J 95(10):4862–4870PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wilbur JL, Kumar A, Kim E, Whitesides GM (1994) Microfabrication by microcontact printing of self‐assembled monolayers. Adv Mater 6(7-8):600–604CrossRefGoogle Scholar
  23. 23.
    Nia HT, Bozchalooi IS, Li Y, Han L, Hung H-H, Frank E, Youcef-Toumi K, Ortiz C, Grodzinsky A (2013) High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys J 104(7):1529–1537PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Han L (2007) Nanomechanics of cartilage extracellular matrix and macromolecules. Doctoral dissertation, Massachusetts Institute of Technology, retrieved from DSpace.
  25. 25.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868CrossRefGoogle Scholar
  26. 26.
    Nia HT, Han L, Li Y, Ortiz C, Grodzinsky A (2011) Poroelasticity of cartilage at the nanoscale. Biophys J 101(9):2304–2313PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nia HT, Han L, Bozchalooi IS, Roughley P, Youcef-Toumi K, Grodzinsky AJ, Ortiz C, Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties (Submitted)Google Scholar
  28. 28.
    Nia HT, Bozchalooi IS, Youcef-Toumi K, Ortiz C, Grodzinsky AJ, Frank E (2013) High-frequency rheology system. US Patent 8,516,610Google Scholar
  29. 29.
    Nia HT (2013) Nanomechanics of cartilage at the matrix and molecular levels. Doctoral dissertation, Massachusetts Institute of Technology, retrieved from DSpace.
  30. 30.
    Dean D, Seog J, Ortiz C, Grodzinsky AJ (2003) Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans. Langmuir 19(13):5526–5539CrossRefGoogle Scholar
  31. 31.
    Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120:491PubMedCrossRefGoogle Scholar
  32. 32.
    Grodzinsky AJ (2011) Fields, forces, and flows in biological systems, chapter 4. Garland Science, New York, pp 259–272Google Scholar
  33. 33.
    Nia HT, Han L, Soltani I, Youcef-Toumi K, Grodzinsky A, Ortiz C (2013) Frequency-dependent nanomechanical behavior of aggrecan demonstrates that aggrecan is the dominant constituent responsible for the frequency dependence of cartilage poroelasticity. Orthopedic Research Society, San Antonio, TX, 2013Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hadi Tavakoli Nia
    • 1
  • Christine Ortiz
    • 2
  • Alan Grodzinsky
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringMITCambridgeUSA
  2. 2.Department of Materials Science and EngineeringMITCambridgeUSA
  3. 3.Department of Biological Engineering, Electrical Engineering and Computer Science, and Mechanical EngineeringMITCambridgeUSA

Personalised recommendations