Analysis of Hyaluronan Synthase Activity

  • Davide Vigetti
  • Evgenia Karousou
  • Manuela Viola
  • Alberto PassiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)


Hyaluronan (HA) is a component of the extracellular matrix that is involved in many physiological and pathological processes. As HA modulates several functions (i.e., cell proliferation and migration, inflammation), its presence in the tissues can have positive or negative effects. HA synthases (HAS) are a family of three isoenzymes located on the plasma membrane that are responsible for the production of such polysaccharide and, therefore, their activity is critical to determine the accumulation of HA in tissues. Here, we describe a nonradioactive method to quantify the HAS enzymatic activity in crude cellular membrane preparation.

Key words

Enzymatic activity UDP sugars Glycosaminoglycan synthesis Hyaluronan Hyaluronan synthase 



The authors acknowledge the “Centro Grandi Attrezzature per la Ricerca Biomedica”, Università degli Studi dell’Insubria, for instruments availability and the PhD School in Biological and Medical Sciences.


  1. 1.
    Jiang D, Liang J, Noble PW (2011) Hyaluronan as an immune regulator in human diseases. Physiol Rev 91:221–264PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461PubMedCrossRefGoogle Scholar
  3. 3.
    Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 278:1419–1428PubMedCrossRefGoogle Scholar
  4. 4.
    Weigel PH, DeAngelis PL (2007) Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781PubMedCrossRefGoogle Scholar
  5. 5.
    Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092PubMedCrossRefGoogle Scholar
  6. 6.
    Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715PubMedCrossRefGoogle Scholar
  7. 7.
    Jokela TA, Jauhiainen M, Auriola S, Kauhanen M, Tiihonen R, Tammi MI, Tammi RH (2008) Mannose inhibits hyaluronan synthesis by down-regulation of the cellular pool of UDP-N-acetylhexosamines. J Biol Chem 283:7666–7673PubMedCrossRefGoogle Scholar
  8. 8.
    Jokela TA, Makkonen KM, Oikari S, Karna R, Koli E, Hart GW, Tammi RH, Carlberg C, Tammi MI (2011) Cellular content of UDP-N-acetylhexosamines controls hyaluronan synthase 2 expression and correlates with O-GlcNAc modification of transcription factors YY1 and SP1. J Biol Chem 286:33632–33640PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Vigetti D, Ori M, Viola M, Genasetti A, Karousou E, Rizzi M, Pallotti F, Nardi I, Hascall VC, De Luca G, Passi A (2006) Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J Biol Chem 281:8254–8263PubMedCrossRefGoogle Scholar
  10. 10.
    Jing W, DeAngelis PL (2004) Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem 279:42345–42349PubMedCrossRefGoogle Scholar
  11. 11.
    Vigetti D, Clerici M, Deleonibus S, Karousou E, Viola M, Moretto P, Heldin P, Hascall VC, De Luca G, Passi A (2011) Hyaluronan synthesis is inhibited by adenosine monophosphate-activated protein kinase through the regulation of HAS2 activity in human aortic smooth muscle cells. J Biol Chem 286:7917–7924PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Vigetti D, Deleonibus S, Moretto P, Karousou E, Viola M, Bartolini B, Hascall VC, Tammi M, De Luca G, Passi A (2012) Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem 287:35544–35555PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Karousou E, Kamiryo M, Skandalis SS, Ruusala A, Asteriou T, Passi A, Yamashita H, Hellman U, Heldin CH, Heldin P (2010) The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J Biol Chem 285:23647–23654PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bourguignon LY, Gilad E, Peyrollier K (2007) Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration. J Biol Chem 282:19426–19441PubMedCrossRefGoogle Scholar
  15. 15.
    Yoshida M, Itano N, Yamada Y, Kimata K (2000) In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity. J Biol Chem 275:497–506PubMedCrossRefGoogle Scholar
  16. 16.
    Tlapak-Simmons VL, Baron CA, Gotschall R, Haque D, Canfield WM, Weigel PH (2005) Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J Biol Chem 280:13012–13018PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Spicer AP (2001) In vitro assays for hyaluronan synthase. Methods Mol Biol 171:373–382PubMedGoogle Scholar
  18. 18.
    Raio L, Cromi A, Ghezzi F, Passi A, Karousou E, Viola M, Vigetti D, De Luca G, Bolis P (2005) Hyaluronan content of Wharton’s jelly in healthy and Down syndrome fetuses. Matrix Biol 24:166–174PubMedCrossRefGoogle Scholar
  19. 19.
    Caride AJ, Filoteo AG, Enyedi A, Verma AK, Penniston JT (1996) Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. Biochem J 316(Pt 1):353–359PubMedCentralPubMedGoogle Scholar
  20. 20.
    Karousou EG, Viola M, Genasetti A, Vigetti D, Luca GD, Karamanos NK, Passi A (2005) Application of polyacrylamide gel electrophoresis of fluorophore-labeled saccharides for analysis of hyaluronan and chondroitin sulfate in human and animal tissues and cell cultures. Biomed Chromatogr 19:761–765PubMedCrossRefGoogle Scholar
  21. 21.
    Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Vigetti D, Genasetti A, Karousou E, Viola M, Clerici M, Bartolini B, Moretto P, De Luca G, Hascall VC, Passi A (2009) Modulation of hyaluronan synthase activity in cellular membrane fractions. J Biol Chem 284:30684–30694PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Davide Vigetti
    • 1
  • Evgenia Karousou
    • 1
  • Manuela Viola
    • 1
  • Alberto Passi
    • 1
    Email author
  1. 1.Dipartimento di Scienze Chirurgiche e MorfologicheUniversità degli Studi dell’InsubriaVareseItaly

Personalised recommendations