Advertisement

Methods for Measuring Exchangeable Protons in Glycosaminoglycans

  • Consuelo N. Beecher
  • Cynthia K. LariveEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)

Abstract

Recent NMR studies of the exchangeable protons of GAGs in aqueous solution, including those of the amide, sulfamate, and hydroxyl moieties, have demonstrated potential for the detection of intramolecular hydrogen bonds, providing insights into secondary structure preferences. GAG amide protons are observable by NMR over wide pH and temperature ranges; however, specific solution conditions are required to reduce the exchange rate of the sulfamate and hydroxyl protons and allow their detection by NMR. Building on the vast body of knowledge on detection of hydrogen bonds in peptides and proteins, a variety of methods can be used to identify hydrogen bonds in GAGs including temperature coefficient measurements, evaluation of chemical shift differences between oligo- and monosaccharides, and relative exchange rates measured through line shape analysis and EXSY spectra. Emerging strategies to allow direct detection of hydrogen bonds through heteronuclear couplings offer promise for the future. Molecular dynamic simulations are important in this effort both to predict and confirm hydrogen bond donors and acceptors.

Key words

Glycosaminoglycan NMR Chemical exchange Hydrogen bond Temperature coefficient Chemical shift difference Activation energy EXSY 

Notes

Acknowledgements

This work was supported by the National Science Foundation grant CHE-1213845 to C.K.L. C.B. acknowledges support through a UCR GRMP fellowship and the US Department of Education, GAANN Award #P200A120170.

References

  1. 1.
    Ly M, Leach FE, Laremore TN et al (2011) The proteoglycan bikunin has a defined sequence. Nat Chem Biol 7:827–833PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Jones CJ, Larive CK (2011) Carbohydrates: cracking the glycan sequence code. Nat Chem Biol 7:758–759PubMedCrossRefGoogle Scholar
  3. 3.
    Jones CJ, Beni S, Limtiaco JFK et al (2011) Heparin characterization: challenges and solutions. Ann Rev Anal Chem 4:439–465CrossRefGoogle Scholar
  4. 4.
    Xu YM, Pempe EH, Liu J (2012) Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 287:29054–29061PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Limtiaco JFK, Beni S, Jones CJ et al (2011) The efficient structure elucidation of minor components in heparin digests using microcoil NMR. Carbohydr Res 346:2244–2254PubMedCrossRefGoogle Scholar
  6. 6.
    Guerrini M, Guglieri S, Beccati D et al (2006) Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochem J 399:191–198PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bain AD (2003) Chemical exchange in NMR. Prog Nucl Magn Reson Spectrosc 43:63–103CrossRefGoogle Scholar
  8. 8.
    Langeslay DJ, Beni S, Larive CK (2011) Detection of the H-1 and N-15 NMR resonances of sulfamate groups in aqueous solution: a new tool for heparin and heparan sulfate characterization. Anal Chem 83:8006–8010PubMedCrossRefGoogle Scholar
  9. 9.
    Ohnishi M, Urry DW (1969) Temperature dependence of amide proton chemical shifts—secondary structures of gramicidin S and valinomycin. Biochem Biophys Res Commun 36:194–202PubMedCrossRefGoogle Scholar
  10. 10.
    Englander SW, Kallenbach NR (1983) Hydrogen-exchange and structural dynamics of proteins and nucleic-acids. Q Rev Biophys 16:521–655PubMedCrossRefGoogle Scholar
  11. 11.
    Andersen NH, Neidigh JW, Harris SM et al (1997) Extracting information from the temperature gradients of polypeptide NH chemical shifts. 1. The importance of conformational averaging. J Am Chem Soc 119:8547–8561CrossRefGoogle Scholar
  12. 12.
    Langeslay DJ, Young RP, Beni S et al (2012) Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Glycobiology 22:1173–1182PubMedCrossRefGoogle Scholar
  13. 13.
    Blundell CD, Deangelis PL, Almond A (2006) Hyaluronan: the absence of amide-carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models. Biochem J 396:487–498PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Blundell CD, Almond A (2007) Temperature dependencies of amide 1H- and 15N-chemical shifts in hyaluronan oligosaccharides. Magn Reson Chem 45:430–433PubMedCrossRefGoogle Scholar
  15. 15.
    Langeslay DJ, Beni S, Larive CK (2012) A closer look at the nitrogen next door: H-1-N-15 NMR methods for glycosaminoglycan structural characterization. J Magn Reson 216:169–174PubMedCrossRefGoogle Scholar
  16. 16.
    Adams B, Lerner L (1992) Observation of hydroxyl protons of sucrose in aqueous-solution—no evidence for persistent intramolecular hydrogen-bonds. J Am Chem Soc 114:4827–4829CrossRefGoogle Scholar
  17. 17.
    Sandstrom C, Baumann H, Kenne L (1998) NMR spectroscopy of hydroxy protons of 3,4-disubstituted methyl α-D-galactopyranosides in aqueous solution. J Chem Soc Perkin Trans 2:809–815Google Scholar
  18. 18.
    Nestor G, Kenne L, Sandstrom C (2010) Experimental evidence of chemical exchange over the β-(1→3) glycosidic linkage and hydrogen bonding involving hydroxy protons in hyaluronan oligosaccharides by NMR spectroscopy. Org Biomol Chem 8:2795–2802PubMedCrossRefGoogle Scholar
  19. 19.
    Battistel MD, Pendrill R, Widmalm G et al (2013) Direct evidence for hydrogen bonding in glycans: a combined NMR and molecular dynamics study. J Phys Chem B 117:4860–4869PubMedCrossRefGoogle Scholar
  20. 20.
    Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665PubMedCrossRefGoogle Scholar
  21. 21.
    Hwang TL, Shaka AJ (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson 112:275–279CrossRefGoogle Scholar
  22. 22.
    Bekiroglu S, Kenne L, Sandström C (2004) NMR study on the hydroxy protons of the Lewis X and Lewis Y oligosaccharides. Carbohydr Res 339:2465–2468PubMedCrossRefGoogle Scholar
  23. 23.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRefGoogle Scholar
  24. 24.
    Pechukas P (1981) Transition state theory. Annu Rev Phys Chem 32:159–177CrossRefGoogle Scholar
  25. 25.
    Jeener J, Meier BH, Bachmann P et al (1979) Investigation of exchange processes by 2-dimensional NMR-spectroscopy. J Chem Phys 71:4546–4553CrossRefGoogle Scholar
  26. 26.
    Dobson CM, Lian LY, Redfield C et al (1986) Measurement of hydrogen-exchange rates using 2D NMR-spectroscopy. J Magn Reson 69:201–209Google Scholar
  27. 27.
    Poppe L, Vanhalbeek H (1992) The rigidity of sucrose—just an illusion. J Am Chem Soc 114:1092–1094CrossRefGoogle Scholar
  28. 28.
    Battistel MD, Shangold M, Trinh L et al (2012) Evidence for helical structure in a tetramer of α2-8 sialic acid: unveiling a structural antigen. J Am Chem Soc 134:10717–10720PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Langeslay DJ, Beecher CN, Dinges MM et al (2013) Glycosaminoglycan structural characterization. eMagRes 2:205–214Google Scholar
  30. 30.
    Van Geet AL (1968) Calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermistor probe. Anal Chem 40:2227–2229CrossRefGoogle Scholar
  31. 31.
    Wolfram S (1991) Mathematica: a system for doing mathematics by computer, 2nd edn. Addison-Wesley Publishing Co., Reading, MAGoogle Scholar
  32. 32.
    Olsen RA, Liu L, Ghaderi N et al (2003) The amide rotational barriers in picolinamide and nicotinamide: NMR and ab initio studies. J Am Chem Soc 125:10125–10132PubMedCrossRefGoogle Scholar
  33. 33.
    Chen JH, Mao XA (1998) Measurement of chemical exchange rate constants with solvent protons using radiation damping. J Magn Reson 131:358–361PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California, RiversideRiversideUSA
  2. 2.Department of ChemistryUniversity of California, RiversideRiversideUSA

Personalised recommendations