Capillary Electrophoretic Analysis of Isolated Sulfated Polysaccharides to Characterize Pharmaceutical Products

  • Zachary Shriver
  • Ram SasisekharanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1229)


Capillary electrophoresis is a powerful methodology for quantification and structural characterization of highly anionic polysaccharides. Separation of saccharides under conditions of electrophoretic flow, typically achieved under low pH (Ampofo et al., Anal Biochem 199:249–255, 1991; Rhomberg et al., Proc Natl Acad Sci U S A 95:4176–4181, 1998), is charge-based. Resolution of components is often superior to flow-based techniques, such as liquid chromatography. During the heparin contamination crisis, capillary electrophoresis was one of the key methodologies used to identify whether or not heparin lots were contaminated (Guerrini et al., Nat Biotechnol 26:669–675, 2008). Here we describe a method for isolation of sulfated heparin/heparan sulfate saccharides from urine, their digestion by deployment of heparinase enzymes (Ernst et al., Crit Rev Biochem Mol Biol 30:387–444, 1995), resolution of species through use of orthogonal digestions, and analysis of the resulting disaccharides by capillary electrophoresis.

Key words

Heparin Heparan sulfate Pentosan polysulfate Capillary electrophoresis Heparinase Alcian Blue 



This work was funded in part by National Institutes of Health (R37 GM057073-13) to R.S.


  1. 1.
    Ampofo SA, Wang HM, Linhardt RJ (1991) Disaccharide compositional analysis of heparin and heparan sulfate using capillary zone electrophoresis. Anal Biochem 199:249–255PubMedCrossRefGoogle Scholar
  2. 2.
    Rhomberg AJ, Ernst S, Sasisekharan R, Biemann K (1998) Mass spectrometric and capillary electrophoretic investigation of the enzymatic degradation of heparin-like glycosaminoglycans. Proc Natl Acad Sci U S A 95:4176–4181PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Guerrini M et al (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ernst S, Langer R, Cooney CL, Sasisekharan R (1995) Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 30:387–444PubMedCrossRefGoogle Scholar
  5. 5.
    Petitou M et al (1999) Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398:417–422PubMedCrossRefGoogle Scholar
  6. 6.
    Zacharski LR, Ornstein DL (1998) Heparin and cancer. Thromb Haemost 80:10–23PubMedGoogle Scholar
  7. 7.
    Anderson VR, Perry CM (2006) Pentosan polysulfate: a review of its use in the relief of bladder pain or discomfort in interstitial cystitis. Drugs 66:821–835PubMedCrossRefGoogle Scholar
  8. 8.
    Robinson LN et al (2012) Harnessing glycomics technologies: integrating structure with function for glycan characterization. Electrophoresis 33:797–814PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Shukla D et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22PubMedCrossRefGoogle Scholar
  10. 10.
    Nelson RM et al (1993) Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82:3253–3258PubMedGoogle Scholar
  11. 11.
    Sundaram M et al (2003) Rational design of low-molecular weight heparins with improved in vivo activity. Proc Natl Acad Sci U S A 100:651–656PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Schirm B, Benend H, Watzig H (2001) Improvements in pentosan polysulfate sodium quality assurance using fingerprint electropherograms. Electrophoresis 22:1150–1162PubMedCrossRefGoogle Scholar
  13. 13.
    Yates EA et al (1996) 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr Res 294:15–27PubMedCrossRefGoogle Scholar
  14. 14.
    Kuberan B et al (2002) Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. J Am Chem Soc 124:8707–8718PubMedCrossRefGoogle Scholar
  15. 15.
    Nemes P, Hoover WJ, Keire DA (2013) High-throughput differentiation of heparin from other glycosaminoglycans by pyrolysis mass spectrometry. Anal Chem 85:7405–7412PubMedCrossRefGoogle Scholar
  16. 16.
    Kandrotas RJ (1992) Heparin pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 22:359–374PubMedCrossRefGoogle Scholar
  17. 17.
    Aich U, Shriver Z, Tharakaraman K, Raman R, Sasisekharan R (2011) Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination. Anal Chem 83:7815–7822PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Godavarti R et al (1996) Heparinase III from Flavobacterium heparinum: cloning and recombinant expression in Escherichia coli. Biochem Biophys Res Commun 225:751–758PubMedCrossRefGoogle Scholar
  19. 19.
    Ernst S et al (1996) Expression in Escherichia coli, purification and characterization of heparinase I from Flavobacterium heparinum. Biochem J 315(Pt 2):589–597PubMedCentralPubMedGoogle Scholar
  20. 20.
    Sasisekharan R, Bulmer M, Moremen KW, Cooney CL, Langer R (1993) Cloning and expression of heparinase I gene from Flavobacterium heparinum. Proc Natl Acad Sci U S A 90:3660–3664PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Myette JR et al (2003) The heparin/heparan sulfate 2-O-sulfatase from Flavobacterium heparinum. Molecular cloning, recombinant expression, and biochemical characterization. J Biol Chem 278:12157–12166PubMedCrossRefGoogle Scholar
  22. 22.
    Myette JR et al (2002) Molecular cloning of the heparin/heparan sulfate delta 4,5 unsaturated glycuronidase from Flavobacterium heparinum, its recombinant expression in Escherichia coli, and biochemical determination of its unique substrate specificity. Biochemistry 41:7424–7434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biological Engineering, Koch Institute of Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations