Skip to main content

Real-Time Imaging of Mu Opioid Receptors by Total Internal Reflection Fluorescence Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1230))

Abstract

Receptor trafficking and signaling are intimately linked, especially in the Mu opioid receptor (MOR) where ligand-dependent endocytosis and recycling have been associated with opioid tolerance and dependence. Ligands of MOR can induce receptor endocytosis and recycling within minutes of exposure in heterologous systems and cultured neurons. Endocytosis removes desensitized receptors after their activation from the plasma membrane, while recycling promotes resensitization by delivering functional receptors to the cell surface. These rapid mechanisms can escape traditional analytical methods where only snapshots are obtained from highly dynamic events.

Total internal reflection fluorescence (TIRF) microscopy is a powerful tool that can be used to investigate, in real time, surface trafficking events at the single molecule level. The restricted excitation of fluorophores located at or near the plasma membrane in combination with high sensitivity quantitative cameras makes it possible to record and analyze individual endocytic and recycling event in real time. In this chapter, we describe a TIRF microscopy protocol to investigate in real time, the ligand-dependent MOR trafficking in Human Embryonic Kidney 293 cells and dissociated striatal neuronal cultures. This approach can provide unique spatio-temporal resolution to understand the fundamental events controlling MOR trafficking at the plasma membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Koch T, Widera A, Bartzsch K et al (2005) Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 67: 280–287

    Article  PubMed  CAS  Google Scholar 

  2. Koch T, Höllt V (2008) Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 117:199–206

    Article  PubMed  Google Scholar 

  3. Whistler JL, Chuang HH, Chu P et al (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–746

    Article  PubMed  CAS  Google Scholar 

  4. Bushell T, Endoh T, Simen AA et al (2002) Molecular components of tolerance to opiates in single hippocampal neurons. Mol Pharmacol 61:55–64

    Article  PubMed  CAS  Google Scholar 

  5. Bailey CP, Couch D, Johnson E et al (2003) Mu-opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J Neurosci 23:10515–10520

    PubMed  CAS  Google Scholar 

  6. Haberstock-Debic H, Kim K-A, Yu YJ et al (2005) Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J Neurosci 25:7847–7857

    Article  PubMed  CAS  Google Scholar 

  7. Grecksch G, Bartzsch K, Widera A et al (2006) Development of tolerance and sensitization to different opioid agonists in rats. Psychopharmacology 186:177–184

    Article  PubMed  CAS  Google Scholar 

  8. Enquist J, Kim J, Bartlett S (2011) A novel knock-in mouse reveals mechanistically distinct forms of morphine tolerance. J Pharmacol 338: 633–640

    CAS  Google Scholar 

  9. Schmoranzer J, Goulian M, Axelrod D et al (2000) Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J Cell Biol 149:23–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2:268–275

    Article  PubMed  CAS  Google Scholar 

  11. Wennmalm S, Simon SM (2007) Studying individual events in biology. Annu Rev Biochem 76:419–446

    Article  PubMed  CAS  Google Scholar 

  12. Roman-Vendrell C, Yu YJ, Yudowski GA (2012) Fast modulation of μ-opioid receptor (MOR) recycling is mediated by receptor agonists. J Biol Chem 287:14782–14791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Yu YJ, Dhavan R, Chevalier MW et al (2010) Rapid delivery of internalized signaling receptors to the somatodendritic surface by sequence-specific local insertion. J Neurosci 30:11703–11714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Soohoo AL, Puthenveedu MA (2013) Divergent modes for cargo-mediated control of clathrin-coated pit dynamics. Mol Biol Cell 24:1725–1734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Henry AG, Hislop JN, Grove J et al (2012) Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev Cell 23:519–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  17. Sankaranarayanan S, De Angelis D, Rothman JE et al (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79:2199–2208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Sage D, Neumann FR, Hediger F et al (2005) Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14: 1372–1383

    Article  PubMed  Google Scholar 

  19. Saffarian S, Cocucci E, Kirchhausen T (2009) Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol 7: e1000191

    Article  PubMed  PubMed Central  Google Scholar 

  20. Flores-Otero J et al (2014) Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. Nat Commun 5:4589 doi:10.1038/ncomms5589

  21. Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from NIH DA023444, R01DA037924, Puerto Rico Science Trust, and NIMHD 8G12-MD007600 (RCMI). We would also like to thank Stephanie Palacio for providing control epifluorescence versus TIRF images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Ariel Yudowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roman-Vendrell, C., Yudowski, G.A. (2015). Real-Time Imaging of Mu Opioid Receptors by Total Internal Reflection Fluorescence Microscopy. In: Spampinato, S. (eds) Opioid Receptors. Methods in Molecular Biology, vol 1230. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1708-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1708-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1707-5

  • Online ISBN: 978-1-4939-1708-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics