Skip to main content

[35S]GTPγS Autoradiography for Studies of Opioid Receptor Functionality

  • Protocol
  • First Online:
Opioid Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1230))

Abstract

The opioid receptors have been an interesting target for the drug industry for decades. These receptors were pharmacologically characterized in the 1970s and several drugs and peptides have emerged over the years. In 2012, the crystal structures were also demonstrated, with new data on the receptor sites, and thus new possibilities will appear. The role of opioids in the brain has attracted considerable interest in several diseases, especially pain and drug dependence. The opioid receptors are G-protein-coupled receptors (GPCR) that are Gi-coupled which make them suitable for studying the receptor functionality. The [35S]GTPγS autoradiography assay is a good option that has the benefit of generating both anatomical and functional data in the area of interest. It is based on the first step of the signaling mechanism of GPCRs. When a ligand binds to the receptor GTP will replace GDP on the α-subunit of the G protein, leading to a dissociation of the βγ-subunit. These subunits will start a cascade of second messengers and subsequently a physiological response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gloriam DE, Fredriksson R, Schioth HB (2007) The G protein-coupled receptor subset of the rat genome. BMC Genomics 8:338

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fredriksson R, Lagerstrom MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  3. Civelli O, Reinscheid RK, Zhang Y et al (2013) G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 53:127–146

    Article  PubMed  CAS  Google Scholar 

  4. Granier S, Manglik A, Kruse AC et al (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485: 321–326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Wu H, Wacker D, Mileni M et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Evans CJ, Keith DE Jr, Morrison H et al (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  8. Kieffer BL, Befort K, Gaveriaux-Ruff C et al (1992) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89:12048–12052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Chen Y, Mestek A, Liu J et al (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol 44:8–12

    PubMed  CAS  Google Scholar 

  10. Yasuda K, Raynor K, Kong H et al (1993) Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci U S A 90:6736–6740

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Asano T, Pedersen SE, Scott CW et al (1984) Reconstitution of catecholamine-stimulated binding of guanosine 5′-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 23:5460–5467

    Article  PubMed  CAS  Google Scholar 

  12. Kurose H, Katada T, Haga T et al (1986) Functional interaction of purified muscarinic receptors with purified inhibitory guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J Biol Chem 261: 6423–6428

    PubMed  CAS  Google Scholar 

  13. Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[gamma-[35S]thio]-triphosphate binding. Proc Natl Acad Sci U S A 92:7242–7246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Sim LJ, Selley DE, Dworkin SI et al (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTP gammaS autoradiography in rat brain. J Neurosci 16:2684–2692

    PubMed  CAS  Google Scholar 

  15. Sovago J, Dupuis DS, Gulyas B et al (2001) An overview on functional receptor autoradiography using [35S]GTPgammaS. Brain Res Brain Res Rev 38:149–164

    Article  PubMed  CAS  Google Scholar 

  16. Harrison C, Traynor JR (2003) The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci 74: 489–508

    Article  PubMed  CAS  Google Scholar 

  17. Milligan G (2003) Principles: extending the utility of [35S]GTP gamma S binding assays. Trends Pharmacol Sci 24:87–90

    Article  PubMed  CAS  Google Scholar 

  18. Strange PG (2010) Use of the GTPgammaS ([35S]GTPgammaS and Eu-GTPgammaS) binding assay for analysis of ligand potency and efficacy at G protein-coupled receptors. Br J Pharmacol 161:1238–1249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Gronbladh A, Johansson J, Nyberg F et al (2013) Recombinant human growth hormone affects the density and functionality of GABAB receptors in the male rat brain. Neuroendocrinology 97:203–211

    Article  PubMed  Google Scholar 

  20. Sim LJ, Selley DE, Childers SR (1997) Autoradiographic visualization in brain of receptor-G protein coupling using [35S]GTP gamma S binding. Methods Mol Biol 83:117–132

    PubMed  CAS  Google Scholar 

  21. Johansson J, Gronbladh A, Nyberg F (2013) Application of in vitro [(35)S]GTPgamma-S autoradiography in studies of growth hormone effects on opioid receptors in the male rat brain. Brain Res Bull 90:100–106

    Article  PubMed  CAS  Google Scholar 

  22. Sim LJ, Liu Q, Childers SR (1998) Endomorphin-stimulated [35S]GTPgammaS binding in rat brain: evidence for partial agonist activity at mu-opioid receptors. J Neurochem 70:1567–1576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kjell and Märta Beijer Foundation and Swedish Medical Research Council (grant 9459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Hallberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grönbladh, A., Hallberg, M. (2015). [35S]GTPγS Autoradiography for Studies of Opioid Receptor Functionality. In: Spampinato, S. (eds) Opioid Receptors. Methods in Molecular Biology, vol 1230. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1708-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1708-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1707-5

  • Online ISBN: 978-1-4939-1708-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics