Abstract
Medicago truncatula has been developed into a model species for legumes. The M. truncatula genotype Jemalong A17 has been used for EST and genome sequencing. However, this genotype is difficult to regenerate from callus cultures. By using cotyledons as explants for Agrobacterium infection and direct shoot formation, this protocol allows for rapid production of transgenic plants from Jemalong A17 and other genotypes. Transgenic plants can be regenerated and established in the greenhouse in only 3–4 months after Agrobacterium-mediated transformation. Transformation frequency was in the range of 5–12 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD (2001) The Medicago Genome Initiative: a model legume database. Nucleic Acids Res 29:114–117
Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304
Young ND et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524
Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315
Voisey CR, White DWR, Dudas B, Appleby RD, Ealing PM, Scott AG (1994) Agrobacterium-mediated transformation of white clover using direct shoot organogenesis. Plant Cell Rep 13:309–314
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Wright, E., Wang, ZY. (2015). Medicago truncatula Transformation Using Cotyledonary Explants. In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1695-5_3
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1695-5_3
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-1694-8
Online ISBN: 978-1-4939-1695-5
eBook Packages: Springer Protocols