Skip to main content

A New Rapid Method for Isolating Nucleoli

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1228))

Abstract

The nucleolus was one of the first subcellular organelles to be isolated from the cell. The advent of modern proteomic techniques has resulted in the identification of thousands of proteins in this organelle, and live cell imaging technology has allowed the study of the dynamics of these proteins. However, the limitations of current nucleolar isolation methods hinder the further exploration of this structure. In particular, these methods require the use of a large number of cells and tedious procedures. In this chapter we describe a new and improved nucleolar isolation method for cultured adherent cells. In this method cells are snap-frozen before direct sonication and centrifugation onto a sucrose cushion. The nucleoli can be obtained within a time as short as 20 min, and the high yield allows the use of less starting material. As a result, this method can capture rapid biochemical changes in nucleoli by freezing the cells at a precise time, hence faithfully reflecting the protein composition of nucleoli at the specified time point. This protocol will be useful for proteomic studies of dynamic events in the nucleolus and for better understanding of the biology of mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Andersen JS, Lyon CE, Fox AH et al (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  2. Lam YW, Lamond AI, Mann M et al (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Ahmad Y, Boisvert FM, Gregor P et al (2009) NOPdb, nucleolar proteome database – 2008 update. Nucleic Acids Res 37:D181–D184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Jellbauer S, Jansen RP (2008) A putative function of the nucleolus in the assembly or maturation of specialized messenger ribonucleoprotein complexes. RNA Biol 5:225–229

    Article  PubMed  CAS  Google Scholar 

  5. Sansam CL, Wells KS, Emeson RB (2003) Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc Natl Acad Sci U S A 100:14018–14023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kieffer-Kwon P, Martianov I, Davidson I (2004) Cell-specific nucleolar localization of TBP-related factor 2. Mol Biol Cell 15:4356–4368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Zhang S, Hemmerich P, Grosse F (2004) Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2). J Cell Sci 117:3935–3945

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Ren XM, Xing JJ, Zheng AC (2010) The nucleolus and viral infection. Virol Sin 25:151–157

    Article  PubMed  Google Scholar 

  9. Li ZF, Liang YM, Lau PN et al (2013) Dynamic localisation of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One 8:e70869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Liang YM, Wang X, Ramalingam R et al (2012) Novel nucleolar isolation method reveals rapid response of human nucleolar proteomes to serum stimulation. J Proteomics 77:521–530

    Article  PubMed  CAS  Google Scholar 

  11. Dundr M, Hebert MD, Karpova TS et al (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Trinkle-Mulcahy L, Lamond AI (2007) Toward a high-resolution view of nuclear dynamics. Science 318:1402–1407

    Article  PubMed  CAS  Google Scholar 

  13. Busch H, Muramatsu M, Adams H et al (1963) Isolation of nucleoli. Exp Cell Res 24(Suppl 9):150–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by a General Research Fund (project number 9041520) provided by the Research Grant Council, Hong Kong. We thank Longman Liang, Sarah Cheung, Myra Cheung, and Leo Sodium in Dr. Lam's lab for their assistance in developing this new method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Fang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, Z.F., Lam, Y.W. (2015). A New Rapid Method for Isolating Nucleoli. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 1228. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1680-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1680-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1679-5

  • Online ISBN: 978-1-4939-1680-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics