Skip to main content

Peach (Prunus persica L.)

  • Protocol
  • First Online:
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1224))

Abstract

Until now, the application of genetic transformation techniques in peach has been limited by the difficulties in developing efficient regeneration and transformation protocols. Here we describe an efficient regeneration protocol for the commercial micropropagation of GF677 rootstock (Prunus persica × Prunus amygdalus). The method is based on the production, via organogenesis, of meristematic bulk tissues characterized by a high competence for shoot regeneration.

This protocol has also been used to obtain GF677 plants genetically engineered with an empty hairpin cassette (hereafter indicated as hp-pBin19), through Agrobacterium tumefaciens-mediated transformation. After 7–8 months of selection on media containing kanamycin, we obtained two genetically modified GF677 lines. PCR and Southern blot analyses were performed to confirm the genetic status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng X, Zhou W (1981) Induction of embryoid ad production of plantlets in vitro from endosperm of peach. Acta Agric Univ Peking 7:95–98

    Google Scholar 

  2. Hammerschlag FA, Bauchan G, Scorza R (1985) Regeneration of peach plants from callus derived from immature embryos. Theor Appl Genet 70:248–251

    Article  CAS  PubMed  Google Scholar 

  3. Mante S, Scorza R, Cordts JM (1989) Plant regeneration from cotyledons of Prunus persica. Prunus domestica and Prunus cerasus. Plant Cell Tiss Org Cult 19:1–11

    Article  CAS  Google Scholar 

  4. Scorza R, Morgens PH, Cordts JM, Mante S, Callahan AM (1990) Agrobacterium-mediated transformation of peach Prunus persica L. Batsch leaf segments, immature embryos and long term embryogenic callus. In Vitro Cell Dev Biol 26:829–834

    Article  CAS  Google Scholar 

  5. Bhansali RR, Driver JA, Durzan DJ (1990) Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep 9:280–284

    Article  CAS  PubMed  Google Scholar 

  6. Pooler MR, Scorza R (1995) Regeneration of peach Prunus persica L. Batsch rootstock cultivars from cotyledons of mature stored seed. HortSci 30:355–356

    Google Scholar 

  7. Zhou HC, Li M, Zhao X, Fan XC, Guo AG (2010) Plant regeneration from in vitro leaves of the peach rootstock ‘Nemaguard’ (Prunus persica x P. davidiana). Plant Cell Tiss Org Cult 101:79–87

    Article  Google Scholar 

  8. Pérez-Jiménez M, Carrillo-Navarro A, Cos-Terrer J (2012) Regeneration of peach (Prunus persica L. Batsch) cultivars and Prunus persica x Prunus dulcis rootstocks via organogenesis. Plant Cell Tissue Organ Cult 108:55–62

    Article  Google Scholar 

  9. Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18

    Article  PubMed Central  PubMed  Google Scholar 

  10. Smigocki AC, Freddi A, Hammerschlag A (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J Am Soc HorticSci 116:1092–1097

    Google Scholar 

  11. Pérez-Clemente R, Pérez-Sanjuán A, García-Férriz L, Beltrán J-P, Cañas LA (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol. Breed 14:419–427

    Article  Google Scholar 

  12. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  14. Compton ME, Gray DJ (1993) Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid, and tetraploid watermelon. J Am Soc HortSci 118:151–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Sabbadini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sabbadini, S., Pandolfini, T., Girolomini, L., Molesini, B., Navacchi, O. (2015). Peach (Prunus persica L.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1658-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1658-0_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1657-3

  • Online ISBN: 978-1-4939-1658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics