Abstract
A protocol for Agrobacterium-mediated stable transformation of whole leaf explants of the apricot (Prunus armeniaca) cultivars ‘Helena’ and ‘Canino’ is described. Regenerated buds were selected using a two-step selection strategy with paromomycin sulfate and transferred to bud multiplication medium 1 week after they were detected for optimal survival. After buds were transferred to bud multiplication medium, antibiotic was changed to kanamycin and concentration increased gradually at each transfer to fresh medium in order to eliminate possible escapes and chimeras. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines, was 5.6 %. Green and healthy buds, surviving high kanamycin concentration, were transferred to shoot multiplication medium where they elongated in shoots and proliferated. Elongated transgenic shoots were rooted in a medium containing 70 μM kanamycin. Rooted plants were acclimatized following standard procedures. This constitutes the only transformation protocol described for apricot clonal tissues and one of the few of Prunus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26
Pérez-Tornero O, Burgos L (2000) Different media requirements for micropropagation of apricot cultivars. Plant Cell Tiss Organ Cult 63:133–141
Pérez-Tornero O, Burgos L, Egea J (1999) Introduction and establishment of apricot in vitro through the regeneration of shoots from meristem tips. In Vitro Cell Dev Biol Plant 35:249–253
Pérez-Tornero O, Egea J, Vanoostende A, Burgos L (2000) Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Sci 158:61–70
Burgos L, Alburquerque N (2003) Low kanamycin concentration and ethylene inhibitors improve adventitious regeneration from apricot leaves. Plant Cell Rep 21:1167–1174
Petri C, Alburquerque N, García-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early Agrobacterium-mediated transformation steps. J Hortic Sci Biotechnol 79:704–712
Petri C, Alburquerque N, Pérez-Tornero O, Burgos L (2005) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tiss Organ Cult 82:105–111
Petri C, Alburquerque N, Burgos L (2005) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tiss Organ Cult 80:271–276
Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27:1317–1324
Petri C, López-Noguera S, Alburquerque N, Egea J, Burgos L (2008) An antibiotic-based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Sci 175:777–783
Petri C et al (2012) A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tiss Organ Cult 110:337–346
López-Noguera S, Petri C, Burgos L (2009) Combining a regeneration-promoting gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Rep 28:1781–1790
Chiu C et al (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330
Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250
Quoirin M, Lepoivre P (1977) Etude de milieux adaptes aux cultures in vitro de Prunus. Acta Hortic 78:437–442
Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut rootstock. HortScience 19:507–509
Alt-Mörbe J, Kühlmann H, Schröder J (1989) Differences in induction of Ti plasmid virulence genes virG and virD and continued control of virD expression by four external factors. Mol Plant-Microbe Interact 2:301–308
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Petri, C., Alburquerque, N., Burgos, L. (2015). Apricot (Prunus armeniaca L.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1658-0_10
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1658-0_10
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-1657-3
Online ISBN: 978-1-4939-1658-0
eBook Packages: Springer Protocols