Skip to main content

Recombineering Linear BACs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1227))

Abstract

Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kazuki Y, Hoshiya H, Takiguchi M et al (2011) Refined human artificial chromosome vectors for gene therapy and animal transgenesis. Gene Ther 18:384–393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kakeda M, Nagata K, Osawa K et al (2011) A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochem Biophys Res Commun 415:439–444

    Article  PubMed  CAS  Google Scholar 

  3. Ferdows MS, Barbour AG (1989) Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc Natl Acad Sci U S A 86:5969–5973

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E et al (1993) Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol 175:7869–7874

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Lezhava A, Mizukami T, Kajitani T et al (1995) Physical map of the linear chromosome of Streptomyces griseus. J Bacteriol 177:6492–6498

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Hertwig S (2007) Linear plasmids and prophages in gram-negative bacteria. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin

    Google Scholar 

  7. Deneke J, Ziegelin G, Lurz R et al (2000) The protelomerase of temperate Escherichia coli phage N15 has cleaving-joining activity. Proc Natl Acad Sci U S A 97:7721–7726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ravin NV, Strakhova TS, Kuprianov VV (2001) The protelomerase of the phage-plasmid N15 is responsible for its maintenance in linear form. J Mol Biol 312:899–906

    Article  PubMed  CAS  Google Scholar 

  9. Ooi YS, Warburton PE, Ravin NV et al (2008) Recombineering linear DNA that replicate stably in E. coli. Plasmid 59:63–71

    Article  PubMed  CAS  Google Scholar 

  10. Narayanan K, Chen Q (2011) Bacterial artificial chromosome mutagenesis using recombineering. J Biomed Biotechnol 2011:971296

    Article  PubMed  PubMed Central  Google Scholar 

  11. Narayanan K, Williamson R, Zhang Y et al (1999) Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Ther 6:442–447

    Article  PubMed  CAS  Google Scholar 

  12. Narayanan K, Sim EU, Ravin NV et al (2009) Recombination between linear double-stranded DNA substrates in vivo. Anal Biochem 387:139–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kaufman RM, Pham CT, Ley TJ (1999) Transgenic analysis of a 100-kb human beta-globin cluster-containing DNA fragment propagated as a bacterial artificial chromosome. Blood 94:3178–3184

    PubMed  CAS  Google Scholar 

  14. Guzman LM, Belin D, Carson MJ et al (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Grant SG, Jessee J, Bloom FR et al (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Narayanan K, Warburton PE (2003) DNA modification and functional delivery into human cells using Escherichia coli DH10B. Nucleic Acids Res 31:e51

    Article  PubMed  PubMed Central  Google Scholar 

  17. Osoegawa K, Woon PY, Zhao B et al (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52:1–8

    Article  PubMed  CAS  Google Scholar 

  18. Narayanan K (2008) Intact recombineering of highly repetitive DNA requires reduced induction of recombination enzymes and improved host viability. Anal Biochem 375:394–396

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  20. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nikolai Ravin for providing N15 reagents and to Sek-Chuen Chow for support and encouragement. Q.C. is grateful to Monash University Malaysia for a HDR Scholarship. This work was partly funded by a Fundamental Research Grant Scheme FRGS/1/2011/ST/MUSM/02/2 from the Ministry of Higher Education Malaysia to K.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaran Narayanan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, Q., Narayanan, K. (2015). Recombineering Linear BACs. In: Narayanan, K. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 1227. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1652-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1652-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1651-1

  • Online ISBN: 978-1-4939-1652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics