Skip to main content

BAC Transgenic Zebrafish for Transcriptional Promoter and Enhancer Studies

  • Protocol
  • First Online:
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1227))

Abstract

With the advent of BAC recombineering techniques, transcriptional promoter and enhancer isolation studies have become much more feasible in zebrafish than in mouse given the easy access to large numbers of fertilized zebrafish eggs and offspring in general, the easy to follow ex-utero development of zebrafish, an overall less skill demand and a more cost-effective technique. Here we provide guidelines for the generation of BAC recombineering-based transgenic zebrafish for DNA transcriptional promoter and enhancer identification studies as well as protocols for their analysis, which have been successfully applied in our laboratories many times. BAC recombineering in zebrafish allows for economical functional genomics studies, for example by integrating developmental biology with comparative genomics approaches to validate potential enhancer elements of vertebrate transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shizuya H, Birren B, Kim UJ et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Testa G, Zhang Y, Vintersten K et al (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21:443–447

    Article  PubMed  CAS  Google Scholar 

  3. Lee EC, Yu D, Martinez De Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  4. Muyrers JP, Zhang Y, Testa G et al (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555–1557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Zhang Y, Buchholz F, Muyrers JP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  PubMed  CAS  Google Scholar 

  6. Dechiara TM, Poueymirou WT, Auerbach W et al (2009) VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos. Methods Mol Biol 530:311–324

    Article  PubMed  CAS  Google Scholar 

  7. Dechiara TM, Poueymirou WT, Auerbach W et al (2010) Producing fully ES cell-derived mice from eight-cell stage embryo injections. Methods Enzymol 476:285–294

    Article  PubMed  Google Scholar 

  8. Kraus P, Leong G, Tan V et al (2010) A more cost effective and rapid high percentage germ-line transmitting chimeric mouse generation procedure via microinjection of 2-cell, 4-cell, and 8-cell embryos with ES and iPS cells. Genesis 48:394–399

    Article  PubMed  Google Scholar 

  9. Chatterjee S, Bourque G, Lufkin T (2011) Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes. BMC Dev Biol 11:63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chatterjee S, Lufkin T (2011) Fishing for function: zebrafish BAC transgenics for functional genomics. Mol Biosyst 7:2345–2351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Asakawa K, Abe G, Kawakami K (2013) Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 7:100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Shakes LA, Du H, Wolf HM et al (2012) Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans. BMC Genomics 13:451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Clark KJ, Urban MD, Skuster KJ et al (2011) Transgenic zebrafish using transposable elements. Methods Cell Biol 104:137–149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Suster ML, Abe G, Schouw A et al (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021

    Article  PubMed  CAS  Google Scholar 

  15. Suster ML, Kikuta H, Urasaki A et al (2009) Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561:41–63

    Article  PubMed  CAS  Google Scholar 

  16. Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Brittijn SA, Duivesteijn SJ, Belmamoune M et al (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53:835–850

    Article  PubMed  CAS  Google Scholar 

  18. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  PubMed  CAS  Google Scholar 

  19. Seabra R, Bhogal N (2010) In vivo research using early life stage models. In Vivo 24:457–462

    PubMed  Google Scholar 

  20. Gong Z, Ju B, Wang X et al (2002) Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn 223:204–215

    Article  PubMed  CAS  Google Scholar 

  21. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711

    Article  PubMed  CAS  Google Scholar 

  22. Culp P, Nusslein-Volhard C, Hopkins N (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci U S A 88:7953–7957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  24. Stuart GW, Mcmurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103:403–412

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Serene Lee and Song Jie as well as Drs Igor Kondrychyn, V Sivakamasundari, Zhen Li, Sumantra Chatterjee, Vladimir Korzh, and especially Mathavan Sinnakaruppan for invaluable advice, patience and access to the zebrafish equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lufkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kraus, P., Winata, C.L., Lufkin, T. (2015). BAC Transgenic Zebrafish for Transcriptional Promoter and Enhancer Studies. In: Narayanan, K. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 1227. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1652-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1652-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1651-1

  • Online ISBN: 978-1-4939-1652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics