Skip to main content

Isolation of Osteocytes from Mature and Aged Murine Bone

  • Protocol
  • First Online:
Book cover Osteoporosis and Osteoarthritis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1226))

Abstract

Osteocytes are thought to be the mechanosensors of bone by sensing mechanical loads imposed upon the bone and transmitting these signals to the other bone cells to initiate bone modeling and remodeling. The location of osteocytes deep within bone is ideal for their function. However, this location makes the study of osteocytes in vivo technically difficult. There are several methods for obtaining and culturing primary osteocytes for in vitro experiments and ex vivo observation. In this chapter, several proven methods are discussed including the isolation of avian osteocytes from chicks and osteocytes from calvaria and long bones of young mice. A detailed protocol for the isolation of osteocytes from hypermineralized bone of mature and aged animals is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell and more. Endocr Rev 34:658–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. van der Plas A, Nijweide PJ (1992) Isolation and purification of osteocytes. J Bone Miner Res 7:389–396

    Article  PubMed  Google Scholar 

  4. Tanaka K, Matsuo T, Ohta M et al (1995) Time-lapse microcinematography of osteocytes. Miner Electrolyte Metab 21:189–192

    CAS  PubMed  Google Scholar 

  5. Aarden EM, Nijweide PJ, van der Plas A et al (1996) Adhesive properties of isolated chick osteocytes in vitro. Bone 18:305–313

    Article  CAS  PubMed  Google Scholar 

  6. Ajubi NE, Klein-Nulend J, Nijweide PJ et al (1996) Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes–a cytoskeleton-dependent process. Biochem Biophys Res Commun 225:62–68

    Article  CAS  PubMed  Google Scholar 

  7. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    Article  CAS  PubMed  Google Scholar 

  8. Kamioka H, Ishihara Y, Ris H et al (2007) Primary cultures of chick osteocytes retain functional gap junctions between osteocytes and between osteocytes and osteoblasts. Microsc Microanal 13:108–117

    Article  CAS  PubMed  Google Scholar 

  9. Kamioka H, Sugawara Y, Murshid SA et al (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21:1012–1021

    Article  CAS  PubMed  Google Scholar 

  10. Klein-Nulend J, Semeins CM, Ajubi NE et al (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts–correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  CAS  PubMed  Google Scholar 

  11. Klein-Nulend J, van der Plas A, Semeins CM et al (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9:441–445

    CAS  PubMed  Google Scholar 

  12. Westbroek I, Ajubi NE, Alblas MJ et al (2000) Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 268:414–419

    Article  CAS  PubMed  Google Scholar 

  13. Mikuni-Takagaki Y, Kakai Y, Satoyoshi M et al (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J Bone Miner Res 10:231–242

    Article  CAS  PubMed  Google Scholar 

  14. Kawata A, Mikuni-Takagaki Y (1998) Mechanotransduction in stretched osteocytes–temporal expression of immediate early and other genes. Biochem Biophys Res Commun 246:404–408

    Article  CAS  PubMed  Google Scholar 

  15. Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17:57–60

    Article  CAS  PubMed  Google Scholar 

  16. Mikuni-Takagaki Y, Suzuki Y, Kawase T et al (1996) Distinct responses of different populations of bone cells to mechanical stress. Endocrinology 137:2028–2035

    CAS  PubMed  Google Scholar 

  17. Gu G, Hentunen TA, Nars M et al (2005) Estrogen protects primary osteocytes against glucocorticoid-induced apoptosis. Apoptosis 10:583–595

    Article  CAS  PubMed  Google Scholar 

  18. Kato Y, Boskey A, Spevak L et al (2001) Establishment of an osteoid preosteocyte-like cell MLO-A5 that spontaneously mineralizes in culture. J Bone Miner Res 16:1622–1633

    Article  CAS  PubMed  Google Scholar 

  19. Kato Y, Windle JJ, Koop BA et al (1997) Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res 12:2014–2023

    Article  CAS  PubMed  Google Scholar 

  20. Woo SM, Rosser J, Dusevich V et al (2011) Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634–2646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhao S, Zhang YK, Harris S et al (2002) MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res 17:2068–2079

    Article  CAS  PubMed  Google Scholar 

  22. Kramer I, Halleux C, Keller H et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  24. Stern AR, Stern MM, Van Dyke ME et al (2012) Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. BioTechniques 52:361–373

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Jahn K, Lara-Castillo N, Brotto L et al (2012) Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur Cell Mater 24:197–209

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kalajzic I, Matthews BG, Torreggiani E et al (2013) In vitro and in vivo approaches to study osteocyte biology. Bone 54:296–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Qing H, Ardeshirpour L, Pajevic PD et al (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27:1018–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda F. Bonewald Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media. New York

About this protocol

Cite this protocol

Stern, A.R., Bonewald, L.F. (2015). Isolation of Osteocytes from Mature and Aged Murine Bone. In: Westendorf, J., van Wijnen, A. (eds) Osteoporosis and Osteoarthritis. Methods in Molecular Biology, vol 1226. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1619-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1619-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1618-4

  • Online ISBN: 978-1-4939-1619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics