Skip to main content

Micro Chromatin Immunoprecipitation (μChIP) from Early Mammalian Embryos

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1222))

Abstract

Chromatin immunoprecipitation (ChIP) is a powerful method for mapping protein–DNA interactions in vivo. Genomic localization of histone modifications, transcription factors, and other regulatory proteins can be revealed by ChIP. However, conventional ChIP protocols require the use of large numbers of cells, which prevents the application of ChIP to rare cell types. We have developed ChIP assays suited for the immunoprecipitation of histone proteins or transcription factors from small cell numbers. Here we describe a rapid, yet sensitive micro (μ)ChIP protocol producing high signal to noise ratio output, suitable for as few as 100 cells. This chapter provides a detailed protocol for μChIP from early mammalian embryos, also suitable for any sample of limited numbers of cells. Minor modifications of this optimized high signal to noise ChIP protocol make it a reliable tool for the use with any cell number (100–107).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arney KL, Erhardt S, Drewell RA, Surani MA (2001) Epigenetic reprogramming of the genome—from the germ line to the embryo and back again. Int J Dev Biol 45(3):533–540

    PubMed  CAS  Google Scholar 

  2. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–58

    Google Scholar 

  3. van der Heijden GW et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122(9): 1008–1022

    Article  PubMed  Google Scholar 

  4. Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50(5):455–461

    PubMed  CAS  Google Scholar 

  5. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124):214–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403(6769):501–502

    Article  PubMed  CAS  Google Scholar 

  7. Oswald J et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478

    Article  PubMed  CAS  Google Scholar 

  8. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1): 172–182

    Article  PubMed  CAS  Google Scholar 

  9. Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280(1):225–236

    Article  PubMed  CAS  Google Scholar 

  10. Santos F et al (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13(13):1116–1121

    Article  PubMed  CAS  Google Scholar 

  11. Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108(9):3642–3647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Wossidlo M et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  Google Scholar 

  13. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136(5):701–713

    Article  PubMed  CAS  Google Scholar 

  14. Dahl JA, Reiner AH, Klungland A, Wakayama T, Collas P (2010) Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS One 5(2):e9150

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smith ZD et al (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220

    Article  PubMed  CAS  Google Scholar 

  17. Niwa H et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929

    Article  PubMed  CAS  Google Scholar 

  18. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762

    Article  PubMed  CAS  Google Scholar 

  19. Dean W et al (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98(24): 13734–13738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Erhardt S et al (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130(18):4235–4248

    Article  PubMed  CAS  Google Scholar 

  21. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53: 937–947

    Article  PubMed  CAS  Google Scholar 

  22. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395–1402

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. O'Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14(16): 3946–3957

    PubMed  PubMed Central  Google Scholar 

  25. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181

    Article  PubMed  CAS  Google Scholar 

  26. Azuara V, Perry P, Sauer S, Spivakov M (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    Article  PubMed  CAS  Google Scholar 

  27. Loh YH et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38: 431–440

    Article  PubMed  CAS  Google Scholar 

  28. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Guenther MG, Levine SS, Boyer LA, Jaenisch R (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Zhao XD et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298

    Article  PubMed  CAS  Google Scholar 

  32. Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398): 376–380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Hunkapiller J et al (2012) Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal. PLoS Genet 8(3):e1002576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Shen Y et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Hon GC et al (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL (2010) The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 24(1):21–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38(7):835–841

    Article  PubMed  Google Scholar 

  38. Dahl JA, Collas P (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25(4):1037–1046

    Article  PubMed  CAS  Google Scholar 

  39. Attema JL et al (2007) Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci U S A 104(30): 12371–12376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Acevedo LG et al (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43(6):791–797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Dahl JA, Collas P (2008) MicroChIP—a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res 36(3):e15

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dahl JA, Collas P (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3(6):1032–1045

    Article  PubMed  CAS  Google Scholar 

  43. Dahl JA, Reiner AH, Collas P (2009) Fast genomic muChIP-chip from 1,000 cells. Genome Biol 10(2):R13

    Article  PubMed  PubMed Central  Google Scholar 

  44. Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7(8):615–618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Goren A et al (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7(1): 47–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Gilfillan GD et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Herrmann D, Dahl JA, Lucas-Hahn A, Collas P, Niemann H (2013) Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics 8(3):281–289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work is supported by the Norwegian Cancer Society. We are thankful to Dr. Adam Robertson for reading and commenting on important parts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Arne Dahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dahl, J.A., Klungland, A. (2015). Micro Chromatin Immunoprecipitation (μChIP) from Early Mammalian Embryos. In: Beaujean, N., Jammes, H., Jouneau, A. (eds) Nuclear Reprogramming. Methods in Molecular Biology, vol 1222. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1594-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1594-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1593-4

  • Online ISBN: 978-1-4939-1594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics