Rhinoviruses pp 101-128 | Cite as

Capillary Electrophoresis, Gas-Phase Electrophoretic Mobility Molecular Analysis, and Electron Microscopy: Effective Tools for Quality Assessment and Basic Rhinovirus Research

  • Victor U. Weiss
  • Xavier Subirats
  • Mohit Kumar
  • Shushan Harutyunyan
  • Irene Gösler
  • Heinrich Kowalski
  • Dieter BlaasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)


We describe standard methods for propagation, purification, quality control, and physicochemical characterization of human rhinoviruses, using HRV-A2 as an example. Virus is propagated in HeLa-OHIO cells grown in suspension culture and purified via sucrose density gradient centrifugation. Purity and homogeneity of the preparations are assessed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE), gas-phase electrophoretic mobility molecular analysis (GEMMA), and electron microscopy (EM). We also briefly describe usage of these methods for the characterization of subviral particles as well as for the analysis of their complexes with antibodies and soluble recombinant receptor mimics.

Key words

Rhinovirus Purification Analysis Capillary electrophoresis Gas-phase electrophoretic mobility molecular analysis Electron microscopy 



The work described in this chapter was made possible via various grants and the DK “Structure and Interaction of Macromolecules” funded by the Austrian Science Fund (FWF). We thank Guenter Resch (Campus Science Support Facilities) for help with the electron microscope and Günter Allmaier (Techn. Univ. Vienna) for making available the GEMMA instrument.


  1. 1.
    Knowles NJ, Hovi T, Hyypiä T et al (2012) Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier Academic, San Diego, pp 855–880Google Scholar
  2. 2.
    McIntyre CL, Knowles NJ, Simmonds P (2013) Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J Gen Virol 94:1791–1806PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Palmenberg AC, Rathe JA, Liggett SB (2010) Analysis of the complete genome sequences of human rhinovirus. J Allergy Clin Immunol 125:1190–1199PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Fuchs R, Blaas D (2012) Productive entry pathways of human rhinoviruses. Adv Virol 2012:826301PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bochkov YA, Palmenberg AC, Lee WM et al (2011) Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 17:627–632PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    McGregor S, Mayer HD (1968) Biophysical studies on rhinovirus and poliovirus. I. Morphology of viral ribonucleoprotein. J Virol 2:149–154PubMedPubMedCentralGoogle Scholar
  7. 7.
    Korant BD, Lonberg-Holm K, Noble J et al (1972) Naturally occurring and artificially produced components of three rhinoviruses. Virology 48:71–86PubMedCrossRefGoogle Scholar
  8. 8.
    Garriga D, Pickl-Herk A, Luque D et al (2012) Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 8:e1002473PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pickl-Herk A, Luque D, Vives-Adrián L et al (2013) Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle structure. Proc Natl Acad Sci U S A 110:20063–20068PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Harutyunyan S, Kumar M, Sedivy A et al (2013) Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog 9:e1003270PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Thomas DC, Conant RM, Hamparian VV (1970) Rhinovirus replication in suspension cultures of HeLa cells. Proc Soc Exp Biol Med 133:62–65PubMedCrossRefGoogle Scholar
  12. 12.
    Korant BD, Lonberg-Holm K, Yin FH et al (1975) Fractionation of biologically active and inactive populations of human rhinovirus type 2. Virology 63:384–394PubMedCrossRefGoogle Scholar
  13. 13.
    Gromova I, Celis EJ (2006) Protein detection in gels by silver staining: a procedure compatible with mass-spectrometry. In: Celis JE, Carter N, Hunter T, Simons K, Small JV, Shotton D (eds) Cell biology: a laboratory handbook, vol 4, 3rd edn. Elsevier, Academic, Amsterdam, pp 219–223CrossRefGoogle Scholar
  14. 14.
    Skern T, Neubauer C, Frasel L et al (1987) A neutralizing epitope on human rhinovirus type 2 includes amino acid residues between 153 and 164 of virus capsid protein VP2. J Gen Virol 68:315–523PubMedCrossRefGoogle Scholar
  15. 15.
    Okun VM, Ronacher B, Blaas D et al (1999) Analysis of common cold virus (human rhinovirus serotype 2) by capillary zone electrophoresis: the problem of peak identification. Anal Chem 71:2028–2032PubMedCrossRefGoogle Scholar
  16. 16.
    Grossman PD, Soane DS (1990) Orientation effects on the electrophoretic mobility of rod-shaped molecules in free solution. Anal Chem 62:1592–1596PubMedCrossRefGoogle Scholar
  17. 17.
    Oita I, Halewyck H, Pieters S et al (2009) Improving the capillary electrophoretic analysis of poliovirus using a Plackett-Burman design. J Pharm Biomed Anal 50:655–663PubMedCrossRefGoogle Scholar
  18. 18.
    Liang S, Schneider RJ (2009) Capillary zone electrophoresis of cowpea mosaic virus and peak identification. Electrophoresis 30:1572–1578PubMedCrossRefGoogle Scholar
  19. 19.
    Horka M, Kubicek O, Kubesova A et al (2011) Rapid separation and identification of the subtypes of swine and equine influenza A viruses by electromigration techniques with UV and fluorometric detection. Analyst 136:3010–3015PubMedCrossRefGoogle Scholar
  20. 20.
    Altria KD (1996) Fundamentals of capillary electrophoresis theory. Methods Mol Biol 52:3–13PubMedGoogle Scholar
  21. 21.
    Schmitt-Kopplin P, Fekete A (2008) The CE way of thinking: “all is relative!”. Methods Mol Biol 384:611–629PubMedGoogle Scholar
  22. 22.
    Simonet BM, Rios A, Valcárcel M (2008) Capillary electrophoresis separation of microorganisms. Methods Mol Biol 384:569–590PubMedGoogle Scholar
  23. 23.
    Okun VM, Ronacher B, Blaas D et al (2000) Affinity capillary electrophoresis for the assessment of complex formation between viruses and monoclonal antibodies. Anal Chem 72:4634–4639PubMedCrossRefGoogle Scholar
  24. 24.
    Desai MJ, Armstrong DW (2003) Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol Mol Biol Rev 67:38–51PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kremser L, Bilek G, Blaas D et al (2007) Capillary electrophoresis of viruses, subviral particles and virus complexes. J Sep Sci 30:1704–1713PubMedCrossRefGoogle Scholar
  26. 26.
    Subirats X, Blaas D, Kenndler E (2011) Recent developments in capillary and chip electrophoresis of bioparticles: viruses, organelles, and cells. Electrophoresis 32:1579–1590PubMedGoogle Scholar
  27. 27.
    Jouyban A, Kenndler E (2006) Theoretical and empirical approaches to express the mobility of small ions in capillary electrophoresis. Electrophoresis 27:992–1005PubMedCrossRefGoogle Scholar
  28. 28.
    Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198CrossRefGoogle Scholar
  29. 29.
    Schnabel U, Groiss F, Blaas D et al (1996) Determination of the pI of human rhinovirus serotype 2 by capillary isoelectric focusing. Anal Chem 68:4300–4303PubMedCrossRefGoogle Scholar
  30. 30.
    Kremser L, Petsch M, Blaas D et al (2006) Influence of detergent additives on mobility of native and subviral rhinovirus particles in capillary electrophoresis. Electrophoresis 27:1112–1121PubMedCrossRefGoogle Scholar
  31. 31.
    Weiss VU, Subirats X, Pickl-Herk A et al (2012) Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas-phase electrophoretic mobility molecular analysis: Part I. Electrophoresis 33:1833–1841PubMedCrossRefGoogle Scholar
  32. 32.
    Subirats X, Weiss VU, Goesler I et al (2013) Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas phase electrophoretic mobility molecular analysis: part II. Electrophoresis 34:1600–1609PubMedCrossRefGoogle Scholar
  33. 33.
    Konecsni T, Kremser L, Snyers L et al (2004) Twelve receptor molecules attach per viral particle of human rhinovirus serotype 2 via multiple modules. FEBS Lett 568:99–104PubMedCrossRefGoogle Scholar
  34. 34.
    Querol-Audi J, Konecsni T, Pous J et al (2009) Minor group human rhinovirus-receptor interactions: geometry of multimodular attachment and basis of recognition. FEBS Lett 583:235–240PubMedCrossRefGoogle Scholar
  35. 35.
    Verdaguer N, Fita I, Reithmayer M et al (2004) X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 11:429–434PubMedCrossRefGoogle Scholar
  36. 36.
    Kaufman SL, Skogen JW, Dorman FD et al (1996) Macromolecule analysis based on electrophoretic mobility in air: globular proteins. Anal Chem 68:1895–1904PubMedCrossRefGoogle Scholar
  37. 37.
    Kapellios EA, Karamanou S, Sardis MF et al (2011) Using nanoelectrospray ion mobility spectrometry (GEMMA) to determine the size and relative molecular mass of proteins and protein assemblies: a comparison with MALLS and QELS. Anal Bioanal Chem 399:2421–2433PubMedCrossRefGoogle Scholar
  38. 38.
    Koropchak JA, Sadain S, Yang X et al (1999) Nanoparticle detection technology for chemical analysis. Anal Chem 71:386A–394APubMedCrossRefGoogle Scholar
  39. 39.
    Intra P, Tippayawong N (2008) An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles. SJST 30:243–256Google Scholar
  40. 40.
    Kallinger P, Weiss VU, Lehner A et al (2013) Analysis and handling of bio-nanoparticles and environmental nanoparticles using electrostatic aerosol mobility. Particuology 11:14–19CrossRefGoogle Scholar
  41. 41.
    Bacher G, Szymanski WW, Kaufman SL et al (2001) Charge-reduced nano electrospray ionization combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spectrom 36:1038–1052PubMedCrossRefGoogle Scholar
  42. 42.
    Thomas JJ, Bothner B, Traina J et al (2004) Electrospray ion mobility spectrometry of intact viruses. Spectroscopy 18:31–36CrossRefGoogle Scholar
  43. 43.
    Kaddis CS, Lomeli SH, Yin S et al (2007) Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J Am Soc Mass Spectrom 18:1206–1216PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Allmaier G, Laschober C, Szymanski WW (2008) Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles-protein complexes, lipoparticles, and viruses. J Am Soc Mass Spectrom 19:1062–1068PubMedCrossRefGoogle Scholar
  45. 45.
    Pease LF, Tsai DH, Brorson KA et al (2011) Physical characterization of icosahedral virus ultra structure, stability, and integrity using electrospray differential mobility analysis. Anal Chem 83:1753–1759PubMedCrossRefGoogle Scholar
  46. 46.
    Pease LF 3rd (2012) Physical analysis of virus particles using electrospray differential mobility analysis. Trends Biotechnol 30:216–224PubMedCrossRefGoogle Scholar
  47. 47.
    Guha S, Li M, Tarlov MJ et al (2012) Electrospray-differential mobility analysis of bionanoparticles. Trends Biotechnol 30:291–300PubMedCrossRefGoogle Scholar
  48. 48.
    Verdaguer N, Blaas D, Fita I (2000) Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300:1179–1194PubMedCrossRefGoogle Scholar
  49. 49.
    Laschober C, Wruss J, Blaas D et al (2008) Gas-phase electrophoretic molecular mobility analysis of size and stoichiometry of complexes of a common cold virus with antibody and soluble receptor molecules. Anal Chem 80:2261–2264PubMedCrossRefGoogle Scholar
  50. 50.
    Harris JR (2007) Negative staining of thinly spread biological samples. Methods Mol Biol 369:107–142PubMedCrossRefGoogle Scholar
  51. 51.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497Google Scholar
  52. 52.
    Abraham G, Colonno RJ (1984) Many rhinovirus serotypes share the same cellular receptor. J Virol 51:340–345PubMedPubMedCentralGoogle Scholar
  53. 53.
    Butterworth BE, Grunert RR, Korant BD et al (1976) Replication of rhinoviruses. Arch Virol 51:169–189PubMedCrossRefGoogle Scholar
  54. 54.
    Sachs LA, Schnurr D, Yagi S et al (2011) Quantitative real-time PCR for rhinovirus, and its use in determining the relationship between TCID50 and the number of viral particles. J Virol Methods 171:212–218PubMedCrossRefGoogle Scholar
  55. 55.
    Reijenga JC, Martens JH, Giuliani A et al (2002) Pherogram normalization in capillary electrophoresis and micellar electrokinetic chromatography analyses in cases of sample matrix-induced migration time shifts. J Chromatogr B Analyt Technol Biomed Life Sci 770:45–51CrossRefGoogle Scholar
  56. 56.
    Rueckert RR (1976) On the structure and morphogenesis of picornaviruses. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology, vol 6. Plenum, New York, NY, pp 131–213Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Victor U. Weiss
    • 1
  • Xavier Subirats
    • 2
  • Mohit Kumar
    • 3
  • Shushan Harutyunyan
    • 3
  • Irene Gösler
    • 3
  • Heinrich Kowalski
    • 3
  • Dieter Blaas
    • 3
    Email author
  1. 1.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  2. 2.Department of Analytical ChemistryUniversity of BarcelonaBarcelonaSpain
  3. 3.Max F. Perutz Laboratories, Department of Medical BiochemistryMedical University of ViennaViennaAustria

Personalised recommendations