Advertisement

Rhinoviruses pp 83-100 | Cite as

Application of FCS in Studies of Rhinovirus Receptor Binding and Uncoating

  • Shushan Harutyunyan
  • Arthur Sedivy
  • Gottfried Köhler
  • Heinrich Kowalski
  • Dieter BlaasEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)

Abstract

Fluorescence correlation spectroscopy (FCS) allows determining diffusion and relaxation properties of fluorescent molecules. It requires only extremely small amounts of sample, down to picomolar concentrations, in an effective analysis volume of a few femtoliters. In essence, FCS determines the autocorrelation of fluorescence fluctuations caused by single labeled molecules passing through the confocal volume of a microscope equipped with a suitable detector; it permits investigating interactions of (macro)molecules, even in single cells. We present an FCS protocol for exploring, under in vitro conditions, the dynamic processes that take place during the early steps of virus infection. We cover two important issues of rhinovirus research, the kinetics of directional RNA release, and virus-receptor interactions exemplified by using human rhinovirus type A2 (HRV-A2) as a model.

Key words

Fluorescence Autocorrelation analysis Diffusion coefficient Fluorescence correlation spectroscopy HRV-A2 Uncoating Receptor Rhinovirus Picornavirus 

References

  1. 1.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61PubMedCrossRefGoogle Scholar
  2. 2.
    Rigler R, Widengren J (1990) Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy. Bioscience 3:180–183Google Scholar
  3. 3.
    Haustein E (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169PubMedCrossRefGoogle Scholar
  4. 4.
    Gosch M, Rigler R (2005) Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv Drug Deliv Rev 57:169–190PubMedCrossRefGoogle Scholar
  5. 5.
    Krieger J, Tódt K, Langowski J. “Biophysics of Macromolecules (B040): Practical Course Biophysics: Fluorescence Correlation Spectroscopy” http://www.dkfz.de/Macromol/teaching/files/fcs_practical.pdf
  6. 6.
    Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–289CrossRefGoogle Scholar
  7. 7.
    Harutyunyan S, Kumar M, Sedivy A et al (2013) Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end. PLoS Pathog 9:e1003270. doi: 10.1371/journal.ppat.1003270 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wruss J, Rünzler D, Steiger C et al (2007) Attachment of VLDL receptors to an icosahedral virus along the 5-fold symmetry axis: Multiple binding modes evidenced by fluorescence correlation spectroscopy. Biochemistry 46:6331–6339PubMedCrossRefGoogle Scholar
  9. 9.
    Duechler M, Skern T, Blaas D et al (1989) Human rhinovirus serotype 2: in vitro synthesis of an infectious RNA. Virology 168:159–161PubMedCrossRefGoogle Scholar
  10. 10.
    Kremser L, Konecsni T, Blaas D et al (2004) Fluorescence labeling of human rhinovirus capsid and analysis by capillary electrophoresis. Anal Chem 76:4175–4181PubMedCrossRefGoogle Scholar
  11. 11.
    Rye HS, Yue S, Wemmer DE et al (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20:2803–2812PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Meseth UWT, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shushan Harutyunyan
    • 1
  • Arthur Sedivy
    • 2
  • Gottfried Köhler
    • 2
  • Heinrich Kowalski
    • 1
  • Dieter Blaas
    • 3
    Email author
  1. 1.Max F. Perutz Laboratories, Department of Medical BiochemistryMedical University of ViennaViennaAustria
  2. 2.Max F. Perutz Laboratories, Department of Structural BiologyUniversity of ViennaViennaAustria
  3. 3.Max F. Perutz Laboratories, Department of Medical BiochemistryMedical University of ViennaViennaAustria

Personalised recommendations