Skip to main content

Infectivity Assays of Human Rhinovirus-A and -B Serotypes

  • Protocol
  • First Online:
Rhinoviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1221))

Abstract

Infectivity is a fundamental property of viral pathogens such as human rhinoviruses (HRVs). This chapter describes two methods for measuring the infectivity of HRV-A and -B serotypes: end point dilution (TCID50) assay and plaque assay. End point dilution assay is a quantal, not quantitative, assay that determines the dilution of the sample at which 50 % of the aliquots have infectious virus. It can be used for all the HRV-A and -B serotypes and related clinical isolates that grow in cell culture and induce cytopathic effect (CPE), degenerative changes in cells that are visible under a microscope. Plaque assay is a quantitative assay that determines the number of infectious units of a virus in a sample. After an infectious unit of virus infects one cell, the infected cell produces progeny viruses that then infect and kill a circle of adjacent cells. This circle of dead cells detaches from the dish and thus leaves a clear hole in a cell monolayer. Plaque assay works only for HeLa-adapted HRV-A and -B serotypes that can make visible plaques on the cell monolayer. Currently the end point dilution assay and plaque assay have not been developed for the newly discovered HRV-C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376:826–834

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ruuskanen O, Waris M, Ramilo O (2013) New aspects on human rhinovirus infections. Pediatr Infect Dis J 32:553–555

    Article  PubMed  Google Scholar 

  3. Lee WM, Lemanske RF Jr, Evans MD, Vang F, Pappas T, Gangnon R, Jackson DJ, Gern JE (2012) Human rhinovirus species and season of infection determine illness severity. Am J Respir Crit Care Med 186:886–891

    Article  PubMed  PubMed Central  Google Scholar 

  4. Winther B (2011) Rhinovirus infections in the upper airway. Proc Am Thorac Soc 8:79–89

    Article  PubMed  Google Scholar 

  5. Turner RB, Lee WM (2009) Rhinovirus. In: Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. ASM, Washington, DC, pp 1063–1082

    Google Scholar 

  6. Turner RB, Couch RB (2007) Rhinoviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 895–909

    Google Scholar 

  7. Horsnell C, Gama RE, Hughes PJ, Stanway G (1995) Molecular relationships between 21 human rhinovirus serotypes. J Gen Virol 76(Pt 10):2549–2555

    Article  PubMed  CAS  Google Scholar 

  8. Rueckert R (1996) Picornaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, PA, pp 609–654

    Google Scholar 

  9. Savolainen C, Blomqvist S, Mulders MN, Hovi T (2002) Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83:333–340

    PubMed  CAS  Google Scholar 

  10. Ledford RM, Patel NR, Demenczuk TM, Watanyar A, Herbertz T, Collett MS, Pevear DC (2004) VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol 78:3663–3674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kistler AL, Webster DR, Rouskin S, Magrini V, Credle JJ, Schnurr DP, Boushey HA, Mardis ER, Li H, DeRisi JL (2007) Genome-wide diversity and selective pressure in the human rhinovirus. Virol J 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tapparel C, Junier T, Gerlach D, Cordey S, Van Belle S, Perrin L, Zdobnov EM, Kaiser L (2007) New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features. BMC Genomics 8:224

    Article  PubMed  PubMed Central  Google Scholar 

  13. Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Price WH (1956) The isolation of a new virus associated with respiratory clinical disease in humans. Proc Natl Acad Sci USA 42:892–896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Pelon W, Mogabgab WJ, Phillips IA, Pierce WE (1957) A cytopathogenic agent isolated from naval recruits with mild respiratory illnesses. Proc Soc Exp Biol Med 94:262–267

    Article  PubMed  CAS  Google Scholar 

  16. Hamparian VV, Colonno RJ, Cooney MK, Dick EC, Gwaltney JM Jr, Hughes JH, Jordan WS Jr, Kapikian AZ, Mogabgab WJ, Monto A et al (1987) A collaborative report: rhinoviruses–extension of the numbering system from 89 to 100. Virology 159:191–192

    Article  PubMed  CAS  Google Scholar 

  17. Kistler A, Avila PC, Rouskin S, Wang D, Ward T, Yagi S, Schnurr D, Ganem D, Derisi JL, Boushey HA (2007) Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 196:817–825

    Article  PubMed  CAS  Google Scholar 

  18. Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY (2007) Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 45:3655–3664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Lee WM, Kiesner C, Pappas T, Lee I, Grindle K, Jartti T, Jakiela B, Lemanske RF Jr, Shult PA, Gern JE (2007) A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. PLoS One 2:e966

    Article  PubMed  PubMed Central  Google Scholar 

  20. McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM (2007) Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol 39:67–75

    Article  PubMed  CAS  Google Scholar 

  21. Ashraf S, Brockman-Schneider R, Bochkov YA, Pasic TR, Gern JE (2012) Biological characteristics and propagation of human rhinovirus-C in differentiated sinus epithelial cells. Virology 436:143–149

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hao W, Bernard K, Patel N, Ulbrandt N, Feng H, Svabek C, Wilson S, Stracener C, Wang K, Suzich J et al (2012) Infection and propagation of human rhinovirus C in human airway epithelial cells. J Virol 86:13524–13532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Bochkov YA, Palmenberg AC, Lee WM, Rathe JA, Amineva SP, Sun X, Pasic TR, Jarjour NN, Liggett SB, Gern JE (2011) Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 17:627–632

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Stott EJ, Tyrrell DA (1968) Some improved techniques for the study of rhinoviruses using HeLa cells. Arch Gesamte Virusforsch 23:236–244

    Article  PubMed  CAS  Google Scholar 

  25. Sherry B, Rueckert R (1985) Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53:137–143

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Sherry B, Mosser AG, Colonno RJ, Rueckert RR (1986) Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J Virol 57:246–257

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Schmidt NJ, Emmons RW (1989) General principles of laboratory. In: Schmidt NJ, Emmons RW (eds) Diagnostic procedures for viral, rickettsial, and chlamydial infections. American Public Health Association, Washington, DC, pp 1–35

    Google Scholar 

  28. Schmidt NJ (1989) Cell culture procedures for diagnostic virology. In: Schmidt NJ, Emmons RW (eds) Diagnostic procedures for viral, rickettsial, and chlamydial infections. American Public Health Association, Washington, DC, pp 51–100

    Google Scholar 

  29. Lee WM, Monroe SS, Rueckert RR (1993) Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67:2110–2122

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai-Ming Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, WM., Chen, Y., Wang, W., Mosser, A. (2015). Infectivity Assays of Human Rhinovirus-A and -B Serotypes. In: Jans, D., Ghildyal, R. (eds) Rhinoviruses. Methods in Molecular Biology, vol 1221. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1571-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1571-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1570-5

  • Online ISBN: 978-1-4939-1571-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics