Infectivity Assays of Human Rhinovirus-A and -B Serotypes

  • Wai-Ming LeeEmail author
  • Yin Chen
  • Wensheng Wang
  • Anne Mosser
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)


Infectivity is a fundamental property of viral pathogens such as human rhinoviruses (HRVs). This chapter describes two methods for measuring the infectivity of HRV-A and -B serotypes: end point dilution (TCID50) assay and plaque assay. End point dilution assay is a quantal, not quantitative, assay that determines the dilution of the sample at which 50 % of the aliquots have infectious virus. It can be used for all the HRV-A and -B serotypes and related clinical isolates that grow in cell culture and induce cytopathic effect (CPE), degenerative changes in cells that are visible under a microscope. Plaque assay is a quantitative assay that determines the number of infectious units of a virus in a sample. After an infectious unit of virus infects one cell, the infected cell produces progeny viruses that then infect and kill a circle of adjacent cells. This circle of dead cells detaches from the dish and thus leaves a clear hole in a cell monolayer. Plaque assay works only for HeLa-adapted HRV-A and -B serotypes that can make visible plaques on the cell monolayer. Currently the end point dilution assay and plaque assay have not been developed for the newly discovered HRV-C.

Key words

MRC-5 HeLa cells End point dilution Plaque assay Infectivity TCID50 PFU 


  1. 1.
    Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376:826–834PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ruuskanen O, Waris M, Ramilo O (2013) New aspects on human rhinovirus infections. Pediatr Infect Dis J 32:553–555PubMedCrossRefGoogle Scholar
  3. 3.
    Lee WM, Lemanske RF Jr, Evans MD, Vang F, Pappas T, Gangnon R, Jackson DJ, Gern JE (2012) Human rhinovirus species and season of infection determine illness severity. Am J Respir Crit Care Med 186:886–891PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Winther B (2011) Rhinovirus infections in the upper airway. Proc Am Thorac Soc 8:79–89PubMedCrossRefGoogle Scholar
  5. 5.
    Turner RB, Lee WM (2009) Rhinovirus. In: Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. ASM, Washington, DC, pp 1063–1082Google Scholar
  6. 6.
    Turner RB, Couch RB (2007) Rhinoviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 895–909Google Scholar
  7. 7.
    Horsnell C, Gama RE, Hughes PJ, Stanway G (1995) Molecular relationships between 21 human rhinovirus serotypes. J Gen Virol 76(Pt 10):2549–2555PubMedCrossRefGoogle Scholar
  8. 8.
    Rueckert R (1996) Picornaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, PA, pp 609–654Google Scholar
  9. 9.
    Savolainen C, Blomqvist S, Mulders MN, Hovi T (2002) Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83:333–340PubMedGoogle Scholar
  10. 10.
    Ledford RM, Patel NR, Demenczuk TM, Watanyar A, Herbertz T, Collett MS, Pevear DC (2004) VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol 78:3663–3674PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kistler AL, Webster DR, Rouskin S, Magrini V, Credle JJ, Schnurr DP, Boushey HA, Mardis ER, Li H, DeRisi JL (2007) Genome-wide diversity and selective pressure in the human rhinovirus. Virol J 4:40PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Tapparel C, Junier T, Gerlach D, Cordey S, Van Belle S, Perrin L, Zdobnov EM, Kaiser L (2007) New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features. BMC Genomics 8:224PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Price WH (1956) The isolation of a new virus associated with respiratory clinical disease in humans. Proc Natl Acad Sci USA 42:892–896PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pelon W, Mogabgab WJ, Phillips IA, Pierce WE (1957) A cytopathogenic agent isolated from naval recruits with mild respiratory illnesses. Proc Soc Exp Biol Med 94:262–267PubMedCrossRefGoogle Scholar
  16. 16.
    Hamparian VV, Colonno RJ, Cooney MK, Dick EC, Gwaltney JM Jr, Hughes JH, Jordan WS Jr, Kapikian AZ, Mogabgab WJ, Monto A et al (1987) A collaborative report: rhinoviruses–extension of the numbering system from 89 to 100. Virology 159:191–192PubMedCrossRefGoogle Scholar
  17. 17.
    Kistler A, Avila PC, Rouskin S, Wang D, Ward T, Yagi S, Schnurr D, Ganem D, Derisi JL, Boushey HA (2007) Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 196:817–825PubMedCrossRefGoogle Scholar
  18. 18.
    Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY (2007) Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 45:3655–3664PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lee WM, Kiesner C, Pappas T, Lee I, Grindle K, Jartti T, Jakiela B, Lemanske RF Jr, Shult PA, Gern JE (2007) A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. PLoS One 2:e966PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM (2007) Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol 39:67–75PubMedCrossRefGoogle Scholar
  21. 21.
    Ashraf S, Brockman-Schneider R, Bochkov YA, Pasic TR, Gern JE (2012) Biological characteristics and propagation of human rhinovirus-C in differentiated sinus epithelial cells. Virology 436:143–149PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hao W, Bernard K, Patel N, Ulbrandt N, Feng H, Svabek C, Wilson S, Stracener C, Wang K, Suzich J et al (2012) Infection and propagation of human rhinovirus C in human airway epithelial cells. J Virol 86:13524–13532PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bochkov YA, Palmenberg AC, Lee WM, Rathe JA, Amineva SP, Sun X, Pasic TR, Jarjour NN, Liggett SB, Gern JE (2011) Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 17:627–632PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Stott EJ, Tyrrell DA (1968) Some improved techniques for the study of rhinoviruses using HeLa cells. Arch Gesamte Virusforsch 23:236–244PubMedCrossRefGoogle Scholar
  25. 25.
    Sherry B, Rueckert R (1985) Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53:137–143PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sherry B, Mosser AG, Colonno RJ, Rueckert RR (1986) Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J Virol 57:246–257PubMedPubMedCentralGoogle Scholar
  27. 27.
    Schmidt NJ, Emmons RW (1989) General principles of laboratory. In: Schmidt NJ, Emmons RW (eds) Diagnostic procedures for viral, rickettsial, and chlamydial infections. American Public Health Association, Washington, DC, pp 1–35Google Scholar
  28. 28.
    Schmidt NJ (1989) Cell culture procedures for diagnostic virology. In: Schmidt NJ, Emmons RW (eds) Diagnostic procedures for viral, rickettsial, and chlamydial infections. American Public Health Association, Washington, DC, pp 51–100Google Scholar
  29. 29.
    Lee WM, Monroe SS, Rueckert RR (1993) Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67:2110–2122PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wai-Ming Lee
    • 1
    Email author
  • Yin Chen
    • 2
  • Wensheng Wang
    • 3
  • Anne Mosser
    • 4
  1. 1.Biological Mimetics Inc.FrederickUSA
  2. 2.Department of Pharmacology and Toxicology, School of PharmacyUniversity of ArizonaTucsonUSA
  3. 3.Global Biological DevelopmentBayer HealthcareBerkeleyUSA
  4. 4.Department of MedicineUniversity of WisconsinMadisonUSA

Personalised recommendations