Growth of Human Rhinovirus in H1-HeLa Cell Suspension Culture and Purification of Virions

  • Wai-Ming Lee
  • Yin Chen
  • Wensheng Wang
  • Anne Mosser
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)


HeLa cell culture is the most widely used system for in vitro studies of the basic biology of human rhinovirus (HRV). It is also useful for making sufficient quantities of virus for experiments that require highly concentrated and purified virus. This chapter describes the protocols for producing a large amount of HeLa cells in suspension culture, using these cells to grow a large quantity of virus of HeLa-adapted HRV-A and -B serotypes, and making highly concentrated virus stock and highly purified virions. These purified HRV virions are free of cellular components and suitable for experiments that are sensitive to cellular contaminations.

Key words

HeLa cells Suspension culture High-titer virus stock Purified virions 


  1. 1.
    Ruuskanen O, Waris M, Ramilo O (2013) New aspects on human rhinovirus infections. Pediatr Infect Dis J 32:553–555PubMedCrossRefGoogle Scholar
  2. 2.
    Lee WM, Lemanske RF Jr, Evans MD, Vang F, Pappas T, Gangnon R, Jackson DJ, Gern JE (2012) Human rhinovirus species and season of infection determine illness severity. Am J Respir Crit Care Med 186:886–891PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Winther B (2011) Rhinovirus infections in the upper airway. Proc Am Thorac Soc 8:79–89PubMedCrossRefGoogle Scholar
  4. 4.
    Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 376:826–834PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Turner RB, Lee WM (2009) Rhinovirus. In: Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. ASM, Washington, DC, pp 1063–1082Google Scholar
  6. 6.
    Turner RB, Couch RB (2007) Rhinoviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 895–909Google Scholar
  7. 7.
    Savolainen C, Blomqvist S, Mulders MN, Hovi T (2002) Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83:333–340PubMedGoogle Scholar
  8. 8.
    Rueckert R (1996) Picornaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology, 3rd edn. Lippincott-Raven, Philadelphia, PA, pp 609–654Google Scholar
  9. 9.
    Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tapparel C, Junier T, Gerlach D, Cordey S, Van Belle S, Perrin L, Zdobnov EM, Kaiser L (2007) New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features. BMC Genomics 8:224PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kistler AL, Webster DR, Rouskin S, Magrini V, Credle JJ, Schnurr DP, Boushey HA, Mardis ER, Li H, DeRisi JL (2007) Genome-wide diversity and selective pressure in the human rhinovirus. Virol J 4:40PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Horsnell C, Gama RE, Hughes PJ, Stanway G (1995) Molecular relationships between 21 human rhinovirus serotypes. J Gen Virol 76(Pt 10):2549–2555PubMedCrossRefGoogle Scholar
  13. 13.
    Ledford RM, Patel NR, Demenczuk TM, Watanyar A, Herbertz T, Collett MS, Pevear DC (2004) VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol 78:3663–3674PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Price WH (1956) The isolation of a new virus associated with respiratory clinical disease in humans. Proc Natl Acad Sci USA 42:892–896PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pelon W, Mogabgab WJ, Phillips IA, Pierce WE (1957) A cytopathogenic agent isolated from naval recruits with mild respiratory illnesses. Proc Soc Exp Biol Med 94:262–267PubMedCrossRefGoogle Scholar
  16. 16.
    Hamparian VV, Colonno RJ, Cooney MK, Dick EC, Gwaltney JM Jr, Hughes JH, Jordan WS Jr, Kapikian AZ, Mogabgab WJ, Monto A et al (1987) A collaborative report: rhinoviruses–extension of the numbering system from 89 to 100. Virology 159:191–192PubMedCrossRefGoogle Scholar
  17. 17.
    Kistler A, Avila PC, Rouskin S, Wang D, Ward T, Yagi S, Schnurr D, Ganem D, Derisi JL, Boushey HA (2007) Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis 196:817–825PubMedCrossRefGoogle Scholar
  18. 18.
    Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY (2007) Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 45:3655–3664PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lee WM, Kiesner C, Pappas T, Lee I, Grindle K, Jartti T, Jakiela B, Lemanske RF Jr, Shult PA, Gern JE (2007) A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. PLoS One 2:e966PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM (2007) Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol 39:67–75PubMedCrossRefGoogle Scholar
  21. 21.
    Ashraf S, Brockman-Schneider R, Bochkov YA, Pasic TR, Gern JE (2012) Biological characteristics and propagation of human rhinovirus-C in differentiated sinus epithelial cells. Virology 436:143–149PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hao W, Bernard K, Patel N, Ulbrandt N, Feng H, Svabek C, Wilson S, Stracener C, Wang K, Suzich J et al (2012) Infection and propagation of human rhinovirus C in human airway epithelial cells. J Virol 86:13524–13532PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bochkov YA, Palmenberg AC, Lee WM, Rathe JA, Amineva SP, Sun X, Pasic TR, Jarjour NN, Liggett SB, Gern JE (2011) Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 17:627–632PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Masters JR (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2:315–319PubMedCrossRefGoogle Scholar
  25. 25.
    Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stutz AM, Jauch A, Aiyar RS, Pau G, Delhomme N et al (2013) The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3(8):1213–1224CrossRefGoogle Scholar
  26. 26.
    Ketler A, Hamparian VV, Hilleman MR (1962) Characterization and classification of ECHO 28-rhinovirus-coryzavirus agents. Proc Soc Exp Biol Med 110:821–831PubMedCrossRefGoogle Scholar
  27. 27.
    Hamparian VV, Leagus MB, Hilleman MR (1964) Additional rhinovirus serotypes. Proc Soc Exp Biol Med 116:976–984PubMedCrossRefGoogle Scholar
  28. 28.
    Conant RM, Somerson NL, Hamparian VV (1968) Plaque formation by rhinoviruses. Proc Soc Exp Biol Med 128:51–56PubMedCrossRefGoogle Scholar
  29. 29.
    Medappa KC, McLean C, Rueckert RR (1971) On the structure of rhinovirus 1A. Virology 44:259–270PubMedCrossRefGoogle Scholar
  30. 30.
    Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht H-J, Johnson JE, Kamer G, Luo M, Mosser AG et al (1985) The structure of a human common cold virus (rhinovirus 14) and its functional relations to other picornaviruses. Nature 317:145–153PubMedCrossRefGoogle Scholar
  31. 31.
    Sherry B, Mosser AG, Colonno RJ, Rueckert RR (1986) Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J Virol 57:246–257PubMedPubMedCentralGoogle Scholar
  32. 32.
    Colonno RJ, Condra JH, Mizutani S, Callahan PL, Davies ME, Murcko MA (1988) Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci USA 85:5449–5453PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56:839–847PubMedCrossRefGoogle Scholar
  34. 34.
    Kim SS, Smith TJ, Chapman MS, Rossmann MC, Pevear DC, Dutko FJ, Felock PJ, Diana GD, McKinlay MA (1989) Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210:91–111PubMedCrossRefGoogle Scholar
  35. 35.
    Lee WM, Monroe SS, Rueckert RR (1993) Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67:2110–2122PubMedPubMedCentralGoogle Scholar
  36. 36.
    Oliveira MA, Zhao R, Lee WM, Kremer MJ, Minor I, Rueckert RR, Diana GD, Pevear DC, Dutko FJ, McKinlay MA et al (1993) The structure of human rhinovirus 16. Structure 1:51–68PubMedCrossRefGoogle Scholar
  37. 37.
    Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D (1994) Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA 91:1839–1842PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhao R, Pevear DC, Kremer MJ, Giranda VL, Kofron JA, Kuhn RJ, Rossmann MG (1996) Human rhinovirus 3 at 3.0 A resolution. Structure 4:1205–1220PubMedCrossRefGoogle Scholar
  39. 39.
    Hadfield AT, Lee W, Zhao R, Oliveira MA, Minor I, Rueckert RR, Rossmann MG (1997) The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Structure 5:427–441PubMedCrossRefGoogle Scholar
  40. 40.
    Che Z, Olson NH, Leippe D, Lee WM, Mosser AG, Rueckert RR, Baker TS, Smith TJ (1998) Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes. J Virol 72:4610–4622PubMedPubMedCentralGoogle Scholar
  41. 41.
    Verdaguer N, Blaas D, Fita I (2000) Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300:1179–1194PubMedCrossRefGoogle Scholar
  42. 42.
    Lee WM, Wang W (2003) Human rhinovirus type 16: mutant V1210A requires capsid-binding drug for assembly of pentamers to form virions during morphogenesis. J Virol 77:6235–6244PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Harris JR, Racaniello VR (2005) Amino acid changes in proteins 2B and 3A mediate rhinovirus type 39 growth in mouse cells. J Virol 79:5363–5373PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yin FH, Lomax NB (1983) Host range mutants of human rhinovirus in which nonstructural proteins are altered. J Virol 48:410–418PubMedPubMedCentralGoogle Scholar
  45. 45.
    Korpi-Steiner NL, Bates ME, Lee WM, Hall DJ, Bertics PJ (2006) Human rhinovirus induces robust IP-10 release by monocytic cells, which is independent of viral replication but linked to type I interferon receptor ligation and STAT1 activation. J Leukoc Biol 80:1364–1374PubMedCrossRefGoogle Scholar
  46. 46.
    Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, Schnurr D, Yagi S, Dolganov G, Boushey H, Avila P et al (2006) Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol 34:192–203PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mathur SK, Fichtinger PS, Kelly JT, Lee WM, Gern JE, Jarjour NN (2013) Interaction between allergy and innate immunity: model for eosinophil regulation of epithelial cell interferon expression. Ann Allergy Asthma Immunol 111(25–31):e21Google Scholar
  48. 48.
    Tao S, Zhu L, Lee P, Lee WM, Knox K, Chen J, Di YP, Chen Y (2012) Negative control of TLR3 signaling by TICAM1 down-regulation. Am J Respir Cell Mol Biol 46:660–667PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Shi L, Manthei DM, Guadarrama AG, Lenertz LY, Denlinger LC (2012) Rhinovirus-induced IL-1beta release from bronchial epithelial cells is independent of functional P2X7. Am J Respir Cell Mol Biol 47:363–371PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zhu L, Lee PK, Lee WM, Zhao Y, Yu D, Chen Y (2009) Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol 40:610–619PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wai-Ming Lee
    • 1
  • Yin Chen
    • 2
  • Wensheng Wang
    • 3
  • Anne Mosser
    • 4
  1. 1.Biological Mimetics Inc.FrederickUSA
  2. 2.Department of Pharmacology and Toxicology, School of PharmacyUniversity of ArizonaTucsonUSA
  3. 3.Global Biological DevelopmentBayer HealthcareBerkeleyUSA
  4. 4.Department of MedicineUniversity of WisconsinMadisonUSA

Personalised recommendations