Advertisement

Rhinoviruses pp 181-188 | Cite as

Mouse Models of Rhinovirus Infection and Airways Disease

  • Nathan W. Bartlett
  • Aran Singanayagam
  • Sebastian L. Johnston
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)

Abstract

Mouse models are invaluable tools for gaining insight into host immunity during virus infection. Until recently, no practical mouse model for rhinovirus infection was available. Development of infection models was complicated by the existence of distinct groups of viruses that utilize different host cell surface proteins for binding and entry. Here, we describe mouse infection models, including virus purification and measurement of host immune responses, for representative viruses from two of these groups: (1) infection of unmodified Balb/c mice with minor group rhinovirus serotype 1B (RV-1B) and (2) infection of transgenic Balb/c mice with major group rhinovirus serotype 16 (RV-16).

Key words

Purification Major group Minor group Serotype Hela cells In vivo infection 

References

  1. 1.
    Bartlett N, Johnston S (2008) Rhinoviruses. In: Mahy B, Regenmortel M (eds) Encyclopedia of virology. Elsevier, Oxford, pp 467–475CrossRefGoogle Scholar
  2. 2.
    Tuthill TJ, Papadopoulos NG, Jourdan P, Challinor LJ, Sharp NA, Plumpton C, Shah K, Barnard S, Dash L, Burnet J et al (2003) Mouse respiratory epithelial cells support efficient replication of human rhinovirus. J Gen Virol 84:2829–2836PubMedCrossRefGoogle Scholar
  3. 3.
    Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G, Zhu J, Glanville N, Choy KJ, Jourdan P, Burnet J et al (2008) Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 14:199–204PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Slater L, Bartlett NW, Haas JJ, Zhu J, Message SD, Walton RP, Sykes A, Dahdaleh S, Clarke DL, Belvisi MG et al (2010) Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 6:e1001178PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bartlett NW, Slater L, Glanville N, Haas JJ, Caramori G, Casolari P, Clarke DL, Message SD, Aniscenko J, Kebadze T et al (2012) Defining critical roles for NF-kappaB p65 and type I interferon in innate immunity to rhinovirus. EMBO Mol Med 4:1244–1260PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Collison A, Hatchwell L, Verrills N, Wark PA, de Siqueira AP, Tooze M, Carpenter H, Don AS, Morris JC, Zimmermann N et al (2013) The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity. Nat Med 19:232–237PubMedCrossRefGoogle Scholar
  7. 7.
    Glanville N, Message SD, Walton RP, Pearson RM, Parker HL, Laza-Stanca V, Mallia P, Kebadze T, Contoli M, Kon OM et al (2013) GammadeltaT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol 6:1091–1100PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Traub S, Nikonova A, Carruthers A, Dunmore R, Vousden KA, Gogsadze L, Hao W, Zhu Q, Bernard K, Zhu J et al (2013) An anti-human icam-1 antibody inhibits rhinovirus-induced exacerbations of lung inflammation. PLoS Pathog 9:e1003520PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nathan W. Bartlett
    • 1
  • Aran Singanayagam
    • 1
  • Sebastian L. Johnston
    • 1
  1. 1.Airway Disease Infection Section, National Heart and Lung InstituteImperial College LondonLondonUK

Personalised recommendations