Rhinoviruses pp 149-170 | Cite as

Reverse Genetics System for Studying Human Rhinovirus Infections

  • Wai-Ming LeeEmail author
  • Wensheng Wang
  • Yury A. Bochkov
  • Iris Lee
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)


Human rhinovirus (HRV) contains a 7.2 kb messenger-sense RNA genome which is the template for reproducing progeny viruses after it enters the cytoplasm of a host cell. Reverse genetics refers to the regeneration of progeny viruses from an artificial cDNA copy of the RNA genome of an RNA virus. It has been a powerful molecular genetic tool for studying HRV and other RNA viruses because the artificial DNA stage makes it practical to introduce specific mutations into the viral RNA genome. This chapter uses HRV-16 as the model virus to illustrate the strategy and methods for constructing and cloning the artificial cDNA copy of a full-length HRV genome, identifying the infectious cDNA clone isolates, and selecting the most vigorous cDNA clone isolate to serve as the standard parental clone for future molecular genetic study of the virus.

Key words

RNA virus Full-length infectious cDNA clone In vitro transcription Transfection 


  1. 1.
    Turner RB, Lee WM (2009) Rhinovirus. In: Richman DD, Whitley RJ, Hayden FG (eds) Clinical virology. ASM, Washington, DC, pp 1063–1082Google Scholar
  2. 2.
    Lee WM, Monroe SS, Rueckert RR (1993) Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol 67:2110–2122PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rueckert R (1996) Picornaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, PA, pp 609–654Google Scholar
  4. 4.
    Taniguchi T, Palmieri M, Weissmann C (1978) QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 274:223–228PubMedCrossRefGoogle Scholar
  5. 5.
    Racaniello VR, Baltimore D (1981) Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci USA 78:4887–4891PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ahlquist P, French R, Janda M, Loesch-Fries LS (1984) Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc Natl Acad Sci USA 81:7066–7070PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Janda M, French R, Ahlquist P (1987) High efficiency T7 polymerase synthesis of infectious RNA from cloned brome mosaic virus cdna and effects of 5’ extensions on transcript infectivity. Virology 158:259–262PubMedCrossRefGoogle Scholar
  8. 8.
    Bochkov YA, Palmenberg AC, Lee WM, Rathe JA, Amineva SP, Sun X, Pasic TR, Jarjour NN, Liggett SB, Gern JE (2011) Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 17:627–632PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Huang T, Wang W, Bessaud M, Ren P, Sheng J, Yan H, Zhang J, Lin X, Wang Y, Delpeyroux F et al (2009) Evidence of recombination and genetic diversity in human rhinoviruses in children with acute respiratory infection. PLoS One 4:e6355PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    McErlean P, Shackelton LA, Lambert SB, Nissen MD, Sloots TP, Mackay IM (2007) Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol 39:67–75PubMedCrossRefGoogle Scholar
  12. 12.
    Tapparel C, Junier T, Gerlach D, Cordey S, Van Belle S, Perrin L, Zdobnov EM, Kaiser L (2007) New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features. BMC Genomics 8:224PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Harris JR, Racaniello VR (2005) Amino acid changes in proteins 2B and 3A mediate rhinovirus type 39 growth in mouse cells. J Virol 79:5363–5373PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kistler AL, Webster DR, Rouskin S, Magrini V, Credle JJ, Schnurr DP, Boushey HA, Mardis ER, Li H, DeRisi JL (2007) Genome-wide diversity and selective pressure in the human rhinovirus. Virol J 4:40PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lau SK, Yip CC, Tsoi HW, Lee RA, So LY, Lau YL, Chan KH, Woo PC, Yuen KY (2007) Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol 45:3655–3664PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lee WM, Wang W, Rueckert RR (1995) Complete sequence of the RNA genome of human rhinovirus 16, a clinically useful common cold virus belonging to the ICAM-1 receptor group. Virus Genes 9:177–181PubMedCrossRefGoogle Scholar
  17. 17.
    Hughes PJ, North C, Jellis CH, Minor PD, Stanway G (1988) The nucleotide sequence of human rhinovirus 1B: molecular relationships within the rhinovirus genus. J Gen Virol 69(Pt 1):49–58PubMedCrossRefGoogle Scholar
  18. 18.
    Skern T, Sommergruber W, Blaas D, Gruendler P, Fraundorfer F, Pieler C, Fogy I, Kuechler E (1985) Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res 13:2111–2126PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Stanway G, Hughes PJ, Mountford RC, Minor PD, Almond JW (1984) The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 12:7859–7875PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J, Sengamalay N, Afonso C, Zhang X, Anderson NG, Ghedin E et al (2008) Viral genome sequencing by random priming methods. BMC Genomics 9:5PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hao W, Bernard K, Patel N, Ulbrandt N, Feng H, Svabek C, Wilson S, Stracener C, Wang K, Suzich J et al (2012) Infection and propagation of human rhinovirus C in human airway epithelial cells. J Virol 86:13524–13532PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ashraf S, Brockman-Schneider R, Bochkov YA, Pasic TR, Gern JE (2012) Biological characteristics and propagation of human rhinovirus-C in differentiated sinus epithelial cells. Virology 436:143–149PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wai-Ming Lee
    • 1
    Email author
  • Wensheng Wang
    • 2
  • Yury A. Bochkov
    • 3
  • Iris Lee
    • 1
  1. 1.Biological Mimetics Inc.FrederickUSA
  2. 2.Global Biological DevelopmentBayer HealthcareBerkeleyUSA
  3. 3.Department of Pediatrics, School of Medicine and Public HealthUniversity of WisconsinMadisonUSA

Personalised recommendations