Classification and Evolution of Human Rhinoviruses

  • Ann C. PalmenbergEmail author
  • James E. Gern
Part of the Methods in Molecular Biology book series (MIMB, volume 1221)


The historical classification of human rhinoviruses (RV) by serotyping has been replaced by a logical system of comparative sequencing. Given that strains must diverge within their capsid sequenced by a reasonable degree (>12–13 % pairwise base identities) before becoming immunologically distinct, the new nomenclature system makes allowances for the addition of new, future types, without compromising historical designations. Currently, three species, the RV-A, RV-B, and RV-C, are recognized. Of these, the RV-C, discovered in 2006, are the most unusual in terms of capsid structure, receptor use, and association with severe disease in children.

Key words

Rhinovirus Evolution Virus taxonomy Immunology Drug resistance 



This work was supported by NIH grant U19 AI104317. The authors thank Wolters Kluwer, publishers of Field’s Virology (2013), for permission to include certain text and figures from Ch 18, “Rhinoviruses” by the same authors.


  1. 1.
    Stanway G, Hughes PJ, Mountford R et al (1984) The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 12:7859–7875PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Erickson JW, Frankenberger EA, Rossmann MG et al (1983) Crystallization of a common cold virus, human rhinovirus 14: isomorphism with poliovirus crystals. Proc Natl Acad Sci U S A 80:931–934PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kitamura N, Semler BL, Rothberg PG et al (1981) Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547–553PubMedCrossRefGoogle Scholar
  4. 4.
    Racaniello VR, Baltimore D (1981) Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A 78:4887–4891PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Carstens EB, Ball LA (2009) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2008). Arch Virol 154:1181–1188PubMedCrossRefGoogle Scholar
  6. 6.
    Savolainen C, Blomqvist S, Mulders MN et al (2002) Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol 83:333–340PubMedGoogle Scholar
  7. 7.
    Palmenberg AC, Rathe J, Liggett S (2010) Analysis of the complete genome sequences of human rhinovirus. J Allergy Clin Immunol 125:1190–1199PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    McIntyre CL, Knowles NJ, Simmonds P (2013) Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J Gen Virol 94:1791–1806PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Rathe JA, Liu X, Tallon LJ et al (2010) Full-genome sequence and analysis of a novel human rhinovirus strain within a divergent HRV-A clade. Arch Virol 155:83–87PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Palmenberg AC, Spiro D, Kuzmickas R et al (2009) Sequencing and analysis of all known human rhinovirus genomes reveals structure and evolution. Science 324:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bochkov YA, Palmenberg AC, Lee W-M et al (2011) Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 17:627–632PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Andries K, Dewindt B, Snoeks J et al (1990) Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 64:1117–1123PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dominguez SR, Briese T, Palacios G et al (2008) Multiplex MassTag PCR for respiratory pathogens in pediatric nasopharyngeal washes by conventional diagnostic testing shows a high prevalence of viruses belonging to a newly recognized rhinovirus clade. J Clin Virol 43:219–222PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Simmonds P, McIntyre C, Savolainen-Kopra C et al (2010) Proposals for the classification of human rhinovirus species C into genotypically assigned types. J Gen Virol 91:2409–2419PubMedCrossRefGoogle Scholar
  15. 15.
    Ashraf S, Brockman-Schneider R, Bochkov YA et al (2013) Biological characteristics and propagation of human rhinovirus-C in differentiated sinus epithelial cells. Virology 436:143–149PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hao W, Bernard K, Patel N et al (2012) Infection and propagation of human rhinovirus C in human airway epithelial cells. J Virol 86:24–32CrossRefGoogle Scholar
  17. 17.
    Basta HA, Sgro J-Y, Palmenberg AC (2013) Modeling of the human rhinovirus C capsid suggests a novel topology with insights on receptor preference and immunogenicity. Virology 448:176–184PubMedCrossRefGoogle Scholar
  18. 18.
    Basta HA, Ashraf S, Bochkov YA et al (2013) Modeling of the human rhinovirus C capsid and antiviral drug resistance. Virology 448:82–90PubMedCrossRefGoogle Scholar
  19. 19.
    Vlasak M, Roivainen M, Reithmayer M et al (2005) The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 H1 loop is not sufficient for receptor binding. J Virol 79:7389–7395PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jackson RJ (1996) Initiation site selection mechanisms. In: Hershey JWB, Mathews MB, Sonenberg N (eds) Translational control. Cold Spring Harbor Laboratory Press, New York, NY, pp 71–112Google Scholar
  21. 21.
    Steil BP, Barton DJ (2009) Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res 139:240–252PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cordey S, Gerlach D, Junier T et al (2008) The cis-acting replication elements define human enterovirus and rhinovirus species. RNA 14:1568–1578PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ledford RM, Patel NR, Demenczuk TM et al (2004) VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol 78:3663–3674PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Huang T, Wang W, Bessaud M et al (2009) Evidence of recombination and genetic diversity in human rhinoviruses in children with acute respiratory infection. PLoS One 4:e6355PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    McIntyre CL, McWilliam Leitch EC, Savolainen-Kopra C et al (2010) Analysis of genetic diversity and sites of recombination in human rhinovirus species C. J Virol 84:10297–10310PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Molecular VirologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Pediatrics and MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations