Skip to main content

Mast Cell Development and Function in the Zebrafish

  • Protocol
  • First Online:
Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1220))

Abstract

The many advantages of the zebrafish model provide a unique opportunity to integrate the tools of developmental embryology, transgenesis, and functional assays to elucidate the molecular pathways underlying hematopoiesis and for modeling human blood diseases. These methodologies have recently been applied to the zebrafish mast cell lineage and have resulted in a better understanding of vertebrate mast cell biology. By employing whole-mount in situ hybridization alone and in combination with co-localization approaches, fluorescence-activated cell sorting (FACS), and morpholino gene knockdown studies, new insights into early mast cell transcriptional regulation and ontogeny have been exposed in vivo. Transgenic strategies have permitted the modeling of human mast cell diseases, like systemic mastocytosis in zebrafish, which can subsequently be exploited for high-throughput chemical screens to identify potential therapies in these conditions. Mast cell functional assays have been adapted to zebrafish providing the opportunity to utilize this model for interrogating the cellular players in innate and adaptive immunity and as a live animal readout for drug responses in allergic and inflammatory reactions. These techniques are detailed in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman JN, Kanki JP, Look AT (2005) Zebrafish as a model for myelopoiesis during embryogenesis. Exp Hematol 33:997–1006

    Article  CAS  PubMed  Google Scholar 

  2. Carradice D, Lieschke GJ (2008) Zebrafish in hematology: sushi or science? Blood 111:3331–3342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dobson JT, Seibert J, Teh EM, Da’as S, Fraser RB, Paw BH, Lin TJ, Berman JN (2008) Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 112:2969–2972

    Article  CAS  PubMed  Google Scholar 

  4. Da’as S, Teh EM, Dobson JT, Nasrallah GK, McBride ER, Wang H, Neuberg DS, Marshall JS, Lin TJ, Berman JN (2011) Zebrafish mast cells possess an FcεRI-like receptor and participate in innate and adaptive immune responses. Dev Comp Immunol 35:125–134

    Article  PubMed  Google Scholar 

  5. Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32:745–757

    Article  CAS  PubMed  Google Scholar 

  6. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20:367–379

    Article  CAS  PubMed  Google Scholar 

  7. Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA, Litman GW, Catic A, Amemiya CT, Zon LI, Trede NS (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330

    PubMed  Google Scholar 

  8. Da’as SI, Coombs AJ, Balci TB, Grondin CA, Ferrando AA, Berman JN (2012) The zebrafish reveals dependence of the mast cell lineage on Notch signaling in vivo. Blood 119:3585–3594

    Article  PubMed Central  PubMed  Google Scholar 

  9. Metcalfe DD (2008) Mast cells and mastocytosis. Blood 112:946–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT, January CT, Peterson RT, Milan DJ (2011) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23–30

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bowman TV, Zon LI (2010) Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. ACS Chem Biol 5:159–161

    Article  CAS  PubMed  Google Scholar 

  12. Yeh JR, Munson KM (2010) Zebrafish small molecule screen in reprogramming/cell fate modulation. Methods Mol Biol 636:317–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yeh JR, Munson KM, Elagib KE, Goldfarb AN, Sweetser DA, Peterson RT (2009) Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol 5:236–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134:4147–4156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108:3976–3978

    Article  CAS  PubMed  Google Scholar 

  16. Hsu K, Traver D, Kutok JL, Hagen A, Liu TX, Paw BH, Rhodes J, Berman JN, Zon LI, Kanki JP et al (2004) The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104:1291–1297

    Article  CAS  PubMed  Google Scholar 

  17. Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, Handin RI (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106:3803–3810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang Z, Jiang H, Lin S (2009) Bacterial artificial chromosome transgenesis for zebrafish. Methods Mol Biol 546:103–116

    Article  CAS  PubMed  Google Scholar 

  19. Gray C, Loynes CA, Whyte MK, Crossman DC, Renshaw SA, Chico TJ (2011) Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost 105:811–819

    Article  CAS  PubMed  Google Scholar 

  20. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  CAS  PubMed  Google Scholar 

  21. Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish: chemotherapy response assay in vivo. Br J Haematol 153:786–789

    Article  CAS  PubMed  Google Scholar 

  22. Veinotte CJ, Corkery D, Dellaire G, El-Naggar A, Sinclair K, Bernstein ML, Sorensen PB, Berman JN (2012) Using zebrafish xenotransplantation to study the role of Y-Box binding protein (YB-1) in the metastasis of Ewing family tumors. American Academy of Cancer Research Annual Meeting, Abstract 1398

    Google Scholar 

  23. Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P (2010) Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 8:e1000562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Stachura DL, Svoboda O, Lau RP, Balla KM, Zon LI, Bartunek P, Traver D (2011) Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118:1274–1282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lavens SE, Proud D, Warner JA (1993) A sensitive colorimetric assay for the release of tryptase from human lung mast cells in vitro. J Immunol Methods 166:93–102

    Article  CAS  PubMed  Google Scholar 

  26. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  27. Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236:3077–3087

    Article  CAS  PubMed  Google Scholar 

  28. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    Article  CAS  PubMed  Google Scholar 

  29. Fisher S, Grice EA, Vinton RM, Bessling SL, Urasaki A, Kawakami K, McCallion AS (2006) Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1:1297–1305

    Article  CAS  PubMed  Google Scholar 

  30. Carson F, Hladik C (2009) Histotechnology: a self instructional text. American Society for Clinical Pathology, Chicago

    Google Scholar 

  31. Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, Pascual J, Imamura S, Kishi S, Amatruda JF et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133:864–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schwarzer G, Bassler D, Mitra A, Ducharme FM, Forster J (2004) Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. Cochrane Database Syst Rev. CD001384, PMID 14973969

    Google Scholar 

  33. Dobson JT, Da’as S, McBride ER, Berman JN (2009) Fluorescence-activated cell sorting (FACS) of whole mount in situ hybridization (WISH) labelled haematopoietic cell populations in the zebrafish. Br J Haematol 144:732–735

    Article  PubMed  Google Scholar 

  34. Balci TB, Prykhozhij SV, Teh EM, Da’as SI, McBride E, Liwski R, Chute IC, Leger D, Lewis SM, Berman JN (2014) A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis. Br J Haematol 167(1):48–61. doi:10.1111/bjh.12999

    Article  CAS  PubMed  Google Scholar 

  35. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2013) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  PubMed  Google Scholar 

  36. Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 7(7):745–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Patricia Colp for assistance with histology and immunohistochemistry methodologies, Mary Ann Trevors for assistance with the electron microscopy protocol, and Chansey Veinotte for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Da’as, S.I., Balci, T.B., Berman, J.N. (2015). Mast Cell Development and Function in the Zebrafish. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics