Skip to main content

Urinary MicroRNAs as a New Class of Noninvasive Biomarkers in Oncology, Nephrology, and Cardiology

  • Protocol
  • First Online:
Book cover RNA Interference

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1218))

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression. In the last decade, number of evidences showing miRNAs contribution to the regulation of apoptosis, cellular proliferation, differentiation, and other important cellular processes is constantly growing. Specific miRNA expression signatures have been identified in variety of human cancers as well as pathologies of cardiovascular and urinary systems. Our chapter focuses on the potential of urinary miRNAs to serve as biomarkers in uro-oncology, nephrology, and cardiology. We discuss in detail recent knowledge about the origin of urinary miRNAs, their stability, quality control, and their utility as a potential new class of biomarkers in medicine. Finally, we summarize the studies focusing on detection and characterization of urinary miRNAs as potential biomarkers in urologic cancers, nephrology, and cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mall C, Rocke DM, Durbin-Johnson B, Weiss RH (2013) Stability of miRNA in human urine supports its biomarker potential. Biomark Med 7:623–631

    Article  PubMed  CAS  Google Scholar 

  2. Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J, Radova L, Greslikova H, Kuglik P, Vetesnikova E et al (2013) Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica 7:623–631

    Google Scholar 

  3. Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R, Slaby O (2012) Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:55

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Zheng H, Zhang L, Zhao Y, Yang D, Song F, Wen Y, Hao Q, Hu Z, Zhang W, Chen K (2013) Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS One 8:e77853

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  PubMed  CAS  Google Scholar 

  6. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  PubMed  CAS  Google Scholar 

  7. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110

    PubMed  PubMed Central  Google Scholar 

  8. Sallustio F, Costantino V, Cox SN, Loverre A, Divella C, Rizzi M, Schena FP (2013) Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int 83:392–403

    Article  PubMed  CAS  Google Scholar 

  9. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    Article  PubMed  CAS  Google Scholar 

  10. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:Ra81

    Article  PubMed  Google Scholar 

  12. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Beltrami C, Clayton A, Phillips AO, Fraser DJ, Bowen T (2012) Analysis of urinary microRNAs in chronic kidney disease. Biochem Soc Trans 40:875–879

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O‘Briant KC, Allen A et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Yun SJ, Jeong P, Kim WT, Kim TH, Lee YS, Song PH, Choi YH, Kim IY, Moon SK, Kim WJ (2012) Cell-free microRNAs in urine as diagnostic and prognostic biomarkers of bladder cancer. Int J Oncol 41:1871–1878

    PubMed  CAS  Google Scholar 

  16. Lv LL, Cao Y, Liu D, Xu M, Liu H, Tang RN, Ma KL, Liu BC (2013) Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int J Biol Sci 9:1021–1031

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kirschner MB, van Zandwijk N, Reid G (2013) Cell-free microRNAs: potential biomarkers in need of standardized reporting. Front Genet 4:56

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Sapre N, Selth LA (2013) Circulating microRNAs as biomarkers of prostate cancer: the state of play. Prostate Cancer 2013:539680

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, Reid G (2011) Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 6:e24145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7:e30679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–661

    Article  PubMed  CAS  Google Scholar 

  24. Mengual L, Lozano JJ, Ingelmo-Torres M, Gazquez C, Ribal MJ, Alcaraz A (2013) Using microRNA profiling in urine samples to develop a non-invasive test for bladder cancer. Int J Cancer 133:2631–2641

    PubMed  CAS  Google Scholar 

  25. Snowdon J, Boag S, Feilotter H, Izard J, Siemens DR (2012) A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can Urol Assoc J:1–5

    Google Scholar 

  26. Yamada Y, Enokida H, Kojima S, Kawakami K, Chiyomaru T, Tatarano S, Yoshino H, Kawahara K, Nishiyama K, Seki N et al (2011) MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci 102:522–529

    Article  PubMed  CAS  Google Scholar 

  27. Miranda KC, Bond DT, McKee M, Skog J, Paunescu TG, Da Silva N, Brown D, Russo LM (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78:191–199

    Article  PubMed  Google Scholar 

  28. Huang X, Liang M, Dittmar R, Wang L (2013) Extracellular microRNAs in urologic malignancies: chances and challenges. Int J Mol Sci 14:14785–14799

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miah S, Dudziec E, Drayton RM, Zlotta AR, Morgan SL, Rosario DJ, Hamdy FC, Catto JW (2012) An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer 107:123–128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Waikar SS, Sabbisetti VS, Bonventre JV (2010) Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int 78:486–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Vrooman OP, Witjes JA (2008) Urinary markers in bladder cancer. Eur Urol 53:909–916

    Article  PubMed  Google Scholar 

  32. Guancial EA, Bellmunt J, Yeh S, Rosenberg JE, Berman DM (2013) The evolving understanding of microRNA in bladder cancer. Urol Oncol 32(1):41.e31–41.e40

    Article  Google Scholar 

  33. Zlotta AR (2013) Bladder cancer: validating what we’ve got. Can Urol Assoc J 7:33–34

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731

    Article  PubMed  CAS  Google Scholar 

  35. Wang G, Chan ES, Kwan BC, Li PK, Yip SK, Szeto CC, Ng CF (2012) Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourin Cancer 10:106–113

    Article  PubMed  Google Scholar 

  36. Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, Miller K, Kilic E, Erbersdobler A, Weikert S et al (2013) miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 15:695–705

    Article  PubMed  CAS  Google Scholar 

  37. Kim SM, Kang HW, Kim WT, Kim YJ, Yun SJ, Lee SC, Kim WJ (2013) Cell-free microRNA-214 from urine as a biomarker for non-muscle-invasive bladder cancer. Korean J Urol 54:791–796

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tolle A, Jung M, Rabenhorst S, Kilic E, Jung K, Weikert S (2013) Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol Rep 30:1949–1956

    PubMed  Google Scholar 

  39. Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, Fuse M, Nakagawa M, Enokida H (2012) Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget 3:44–57

    PubMed  PubMed Central  Google Scholar 

  40. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  41. Obort AS, Ajadi MB, Akinloye O (2013) Prostate-specific antigen: any successor in sight? Rev Urol 15:97–107

    PubMed  PubMed Central  Google Scholar 

  42. Dijkstra S, Mulders PF, Schalken JA (2013) Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin Biochem 47:889–896

    Article  PubMed  Google Scholar 

  43. Ahumada-Tamayo S, Saavedra-Briones D, Cantellano-Orozco M, Salido-Guadarrama A, Rodríguez-Dorantes M, Urdiales-Ortiz A, Hernández-Castellanos V, Merayo-Chalico C, Sánchez-Turati G, Santana-Ríos Z et al (2011) MicroRNA determination in urine for prostate cancer detection in Mexican patients at the Hospital General “Dr. Manuel Gea González”. Rev Mex Urol:213–217

    Google Scholar 

  44. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, Kuslich C, Visakorpi T, Hamdy FC (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106:768–774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, Oermann EK, Uhm S, Kim JS, Chen LN et al (2013) MicroRNA profiling in prostate cancer—the diagnostic potential of urinary miR-205 and miR-214. PLoS One 8:e76994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Gu J, Wang Y, Wu X (2013) MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des 19:1292–1300

    Article  PubMed  CAS  Google Scholar 

  47. Liu J, Mao Q, Liu Y, Hao X, Zhang S, Zhang J (2013) Analysis of miR-205 and miR-155 expression in the blood of breast cancer patients. Chin J Cancer Res 25:46–54

    PubMed  PubMed Central  Google Scholar 

  48. Wang N, Li Q, Feng NH, Cheng G, Guan ZL, Wang Y, Qin C, Yin CJ, Hua LX (2013) miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J Androl 15:735–741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Puhr M, Hoefer J, Schafer G, Erb HH, Oh SJ, Klocker H, Heidegger I, Neuwirt H, Culig Z (2012) Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 181:2188–2201

    Article  PubMed  CAS  Google Scholar 

  50. Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, Pace KT, Yousef GM (2010) Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 43:150–158

    Article  PubMed  CAS  Google Scholar 

  51. Cheng T, Wang L, Li Y, Huang C, Zeng L, Yang J (2013) Differential microRNA expression in renal cell carcinoma. Oncol Lett 6:769–776

    PubMed  CAS  PubMed Central  Google Scholar 

  52. von Brandenstein M, Pandarakalam JJ, Kroon L, Loeser H, Herden J, Braun G, Wendland K, Dienes HP, Engelmann U, Fries JW (2012) MicroRNA 15a, inversely correlated to PKCalpha, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples. Am J Pathol 180:1787–1797

    Article  Google Scholar 

  53. Guo S, Xu X, Tang Y, Zhang C, Li J, Ouyang Y, Ju J, Bie P, Wang H (2013) miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett 344(1):40–46

    Article  PubMed  Google Scholar 

  54. Bandi N, Vassella E (2011) miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 10:55

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, Huang Y, Fang L (2013) MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol 43:1212–1218

    PubMed  CAS  Google Scholar 

  56. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liang M, Liu Y, Mladinov D, Cowley AW Jr, Trivedi H, Fang Y, Xu X, Ding X, Tian Z (2009) MicroRNA: a new frontier in kidney and blood pressure research. Am J Physiol Renal Physiol 297:F553–F558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS (2006) MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 281:18277–18284

    Article  PubMed  CAS  Google Scholar 

  59. Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–348

    Article  PubMed  Google Scholar 

  60. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  PubMed  CAS  Google Scholar 

  61. Caubet C, Lacroix C, Decramer S, Drube J, Ehrich JH, Mischak H, Bascands JL, Schanstra JP (2009) Advances in urinary proteome analysis and biomarker discovery in pediatric renal disease. Pediatr Nephrol 25:27–35

    Article  PubMed  Google Scholar 

  62. Matheson A, Willcox MD, Flanagan J, Walsh BJ (2010) Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab Res Rev 26:150–171

    Article  PubMed  CAS  Google Scholar 

  63. Lan YF, Chen HH, Lai PF, Cheng CF, Huang YT, Lee YC, Chen TW, Lin H (2012) MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 23:2012–2023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y (2012) Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int 81:280–292

    Article  PubMed  CAS  Google Scholar 

  65. Du B, Ma LM, Huang MB, Zhou H, Huang HL, Shao P, Chen YQ, Qu LH (2010) High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 584:811–816

    Article  PubMed  CAS  Google Scholar 

  66. Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Wintour EM, Bertram JF, Jeyaseelan K (2012) Role of microRNAs in kidney homeostasis and disease. Kidney Int 81:617–627

    Article  PubMed  CAS  Google Scholar 

  67. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, Koh P, Thomas M, Jandeleit-Dahm K, Gregorevic P et al (2011) Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol 23:252–265

    Article  PubMed  Google Scholar 

  68. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, Szeto CC (2009) Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Invest 90:98–103

    Article  PubMed  Google Scholar 

  69. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC (2012) Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol 36:412–418

    Article  PubMed  CAS  Google Scholar 

  70. Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JY, Gleadle JM (2011) Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dial Transplant 26:3794–3802

    Article  PubMed  CAS  Google Scholar 

  71. Scian MJ, Maluf DG, David KG, Archer KJ, Suh JL, Wolen AR, Mba MU, Massey HD, King AL, Gehr T et al (2011) MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant 11:2110–2122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, Gwinner W, Thum T (2011) Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 11:2221–2227

    Article  PubMed  CAS  Google Scholar 

  73. Maluf DG, Dumur CI, Suh JL, Scian MJ, King AL, Cathro H, Lee JK, Gehrau RC, Brayman KL, Gallon L et al (2013) The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int 85:439–449

    Article  PubMed  PubMed Central  Google Scholar 

  74. Konta T, Ichikawa K, Suzuki K, Kudo K, Satoh H, Kamei K, Nishidate E, Kubota I (2013) A microarray analysis of urinary microRNAs in renal diseases. Clin Exp Nephrol. Nov 6

    Google Scholar 

  75. Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, Shi Y, Hu J, Guan X, Xia Z et al (2013) Increased serum and urinary microRNAs in children with idiopathic nephrotic syndrome. Clin Chem 59:658–666

    Article  PubMed  CAS  Google Scholar 

  76. Zhou H, Souto-Adeva G, Hardwick D, Illei GG (2011) Potential Biomarkers of Renal Disease Activity in Lupus Nephritis. [Abstract]. Arthritis Rheum 63:2287

    Google Scholar 

  77. Kavsak PA, MacRae AR, Yerna MJ, Jaffe AS (2009) Analytic and clinical utility of a next-generation, highly sensitive cardiac troponin I assay for early detection of myocardial injury. Clin Chem 55:573–577

    Article  PubMed  CAS  Google Scholar 

  78. Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, Bickel C, Baldus S, Warnholtz A, Frohlich M et al (2009) Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 361:868–877

    Article  PubMed  CAS  Google Scholar 

  79. Hamm CW (1994) New serum markers for acute myocardial infarction. N Engl J Med 331:607–608

    Article  PubMed  CAS  Google Scholar 

  80. de Winter RJ, Koster RW, Sturk A, Sanders GT (1995) Value of myoglobin, troponin T, and CK-MBmass in ruling out an acute myocardial infarction in the emergency room. Circulation 92:3401–3407

    Article  PubMed  Google Scholar 

  81. Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O, Ng LL, Wagner DR, Squire IB (2013) A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One 8:e70644

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Fan KL, Zhang HF, Shen J, Zhang Q, Li XL (2013) Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J 65:12–16

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li C, Pei F, Zhu X, Duan DD, Zeng C (2012) Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem 45:727–732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Long G, Wang F, Duan Q, Yang S, Chen F, Gong W, Yang X, Wang Y, Chen C, Wang DW (2012) Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS One 7:e50926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039

    Article  PubMed  CAS  Google Scholar 

  86. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506

    Article  PubMed  Google Scholar 

  87. Gidlof O, Andersson P, van der Pals J, Gotberg M, Erlinge D (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–226

    Article  PubMed  Google Scholar 

  88. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  PubMed  CAS  Google Scholar 

  89. Dong DL, Chen C, Huo R, Wang N, Li Z, Tu YJ, Hu JT, Chu X, Huang W, Yang BF (2010) Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: a novel mechanism for progressive cardiac hypertrophy. Hypertension 55:946–952

    Article  PubMed  CAS  Google Scholar 

  90. Bostjancic E, Zidar N, Stajer D, Glavac D (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169

    Article  PubMed  CAS  Google Scholar 

  91. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Nakamura M (2010) Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail 16:404–410

    Article  PubMed  CAS  Google Scholar 

  92. Cheng Y, Wang X, Yang J, Duan X, Yao Y, Shi X, Chen Z, Fan Z, Liu X, Qin S et al (2012) A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 53:668–676

    Article  PubMed  CAS  Google Scholar 

  93. Zhou X, Mao A, Wang X, Duan X, Yao Y, Zhang C (2013) Urine and serum microRNA-1 as novel biomarkers for myocardial injury in open-heart surgeries with cardiopulmonary bypass. PLoS One 8:e62245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666

    Article  PubMed  Google Scholar 

  95. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O (2012) Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14:147–154

    Article  PubMed  CAS  Google Scholar 

  96. Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stoger L, Wijnands E et al (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432

    Article  PubMed  CAS  Google Scholar 

  97. Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL, Brown RP, Bijol V, Park PJ, Waikar SS et al (2012) Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 129:256–267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC (2011) Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis Markers 30:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, Li PK, Szeto CC (2010) Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol 37:2516–2522

    Article  PubMed  CAS  Google Scholar 

  100. Wang K, Zhang S, Weber J, Baxter D, Galas DJ (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS, Liu BC (2013) MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 305:F1220–F1227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant IGA NT/13547 of the Czech Ministry of Health, by Institutional Resources for Supporting the Research Organization provided by the Czech Ministry of Health in 2012 to Masaryk Memorial Cancer Institute, and by the project “CEITEC–Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Slaby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mlcochova, H., Hezova, R., Meli, A.C., Slaby, O. (2015). Urinary MicroRNAs as a New Class of Noninvasive Biomarkers in Oncology, Nephrology, and Cardiology. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics