Skip to main content

Targeting bcr-abl Transcripts with siRNAs in an Imatinib-Resistant Chronic Myeloid Leukemia Patient: Challenges and Future Directions

  • Protocol
  • First Online:
Book cover RNA Interference

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1218))

Abstract

Within the recent years, RNA interference (RNAi) has become an almost standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential therapeutic use. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. This chapter describes the in vivo application of targeted non-virally delivered synthetic bcr-abl siRNA in a female patient with recurrent Philadelphia chromosome positive chronic myeloid leukemia (CML) resistant to imatinib (Y253F mutation) and chemotherapy after allogeneic hematopoietic stem cell transplantation. A remarkable inhibition of the overexpressed bcr-abl oncogene resulting in increased apoptosis of CML cells was found. In vivo siRNA application was well tolerated without any clinically adverse events. The current findings imply that the clinical application of synthetic siRNA is feasible and safe and has real potential for genetic-based therapies using synthetic non-viral carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldmann JM, Melo JV (2003) Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med 349:1451–1461

    Article  Google Scholar 

  2. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    PubMed  CAS  Google Scholar 

  3. Simanovsky M, Berlinsky S, Sinai P, Leiba M, Nagler A, Galski H (2008) Phenotypic and gene expression diversity of malignant cells in human blast crisis chronic myeloid leukemia. Differentiation 76:908–922

    Article  PubMed  CAS  Google Scholar 

  4. Radich JP, Dai H, Mao M et al (2006) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 103:2794–2799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Lage H (2005) Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 1:103–113

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21- nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  8. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5:355–365

    Article  PubMed  CAS  Google Scholar 

  10. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977

    Article  PubMed  CAS  Google Scholar 

  11. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  12. Elmaagacli AH, Koldehoff M, Peceny R et al (2005) WT1 and BCR-ABL specific small interfering RNA have additive effects in the induction of apoptosis in leukemic cells. Haematologica 90:326–334

    PubMed  CAS  Google Scholar 

  13. Koldehoff M, Kordelas L, Beelen DW, Elmaagacli AH (2010) Small interfering RNA against BCR-ABL transcripts sensitize mutated T315I cells to nilotinib. Haematologica 95:388–397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Koldehoff M, Zakrzewski JL, Beelen DW, Elmaagacli AH (2013) Additive antileukemia effects by GFI1B- and BCR-ABL-specific siRNA in advanced phase chronic myeloid leukemic cells. Cancer Gene Ther 20:421–427

    Article  PubMed  CAS  Google Scholar 

  15. Gratwohl A, Baldomero H, Horisberger B, Schmid C, Passweg J, Urbano-Ispizua A (2002) Current trends in hematopoietic stem cell transplantation in Europe. Blood 100:2374–2386

    Article  PubMed  CAS  Google Scholar 

  16. Goldman J, Gordon M (2006) Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma 47:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Dass CR (2004) Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo transfection. J Mol Med 82:579–591

    Article  PubMed  CAS  Google Scholar 

  18. Fattal E, Couvreur P, Dubernet C (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Del Rev 56:931–946

    Article  CAS  Google Scholar 

  19. Koldehoff M, Steckel NK, Beelen DW, Elmaagacli AH (2007) Therapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin Exp Med 7:47–55

    Article  PubMed  CAS  Google Scholar 

  20. de Fougerolles A, Vornlocher HP, Maraganore J, Liebermann J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  Google Scholar 

  21. Kawakami S, Hashida M (2007) Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 22:142–151

    Article  PubMed  CAS  Google Scholar 

  22. Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  23. Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  PubMed  CAS  Google Scholar 

  24. Song E, Zhu P, Lee S-K et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(7):09–717

    Google Scholar 

  25. Sezaki H, Hashida M (1984) Macromolecule-drug conjugates in targeted cancer chemotherapy. Crit Rev Ther Drug Carrier Syst 1:1–38

    PubMed  CAS  Google Scholar 

  26. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of BCR-ABL gene expression by small interfering RNA. Blood 101:1566–1569

    Article  PubMed  CAS  Google Scholar 

  27. Sewell KL, Geary RS, Baker BF et al (2002) Phase I trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-α. J Pharmacol Exp Ther 303:1334

    Article  PubMed  CAS  Google Scholar 

  28. O’Brian SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR (2005) Phase I and II multicenter study of oblimersen sodium a Bcl-2 antisense oligonucleotide in patients with advanced chronic lymphocytic leukaemia. J Clin Oncol 23:7697–7702

    Article  Google Scholar 

  29. Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Advani R, Peethambaram P, Lum BL et al (2004) A phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with ovarian carcinoma. Cancer 100:321–326

    Article  PubMed  CAS  Google Scholar 

  31. Marcucci G, Byrd JC, Dai G et al (2003) Phase 1 and pharmacodynamic studies of G3139, a BCL-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed leukemia. Blood 101:425–432

    Article  PubMed  CAS  Google Scholar 

  32. Goldman J (2004) Monitoring minimal residual disease in BCR-ABL-positive chronic myeloid leukaemia in the imatinib era. Curr Opin Hematol 12:33–39

    Article  Google Scholar 

  33. Branford S, Rudzki Z, Walsh S et al (2002) High frequency of point mutation clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukaemia or Ph-positive acute lymphoblastic leukaemia who develop imatinib (STI571) resistance. Blood 99:3472–3475

    Article  PubMed  CAS  Google Scholar 

  34. Branford S, Rudzki Z, Walsch S et al (2003) Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102:276–283

    Article  PubMed  CAS  Google Scholar 

  35. Wohlbold L, van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J, Aulitzky WE (2003) Inhibition of BCR-ABL gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102:2236–2269

    Article  PubMed  CAS  Google Scholar 

  36. Wilda M, Fuchs U, Wössmann W, Borkhardt A (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference. Oncogene 21:5716–5724

    Article  PubMed  CAS  Google Scholar 

  37. Withey JM, Marley SB, Kaeda J, Harvey AJ, Crompton MR, Gordon MY (2005) Targeting primary human leukaemia cells with RNA interference: BCR-ABL targeting inhibits myeloid progenitor self-renewal in chronic myeloid leukaemia cells. Br J Haematol 129:377–380

    Article  PubMed  CAS  Google Scholar 

  38. Guo W, Lee RJ (2000) Efficient gene delivery using anionic liposome-complexed polyplexes (LPDII). Biosci Rep 20:419–432

    Article  PubMed  CAS  Google Scholar 

  39. Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochim Biophys Acta 1711:1–11

    Article  PubMed  CAS  Google Scholar 

  40. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1:347–355

    PubMed  CAS  Google Scholar 

  41. Hornung V, Guenthner-Biller M, Bourquin C et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  PubMed  CAS  Google Scholar 

  42. Aigner A (2007) Application of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 76:9–21

    Article  PubMed  CAS  Google Scholar 

  43. Martínez T, Wright N, López-Fraga M, Jiménez AI, Pañeda C (2013) Silencing human genetic diseases with oligonucleotide-based therapies. Hum Genet 132:481–493

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Katja Ahrens, Melanie Kroll, Silke Gottwald, Ines Riepenhoff, and Christiane Schary for their excellent technical execution of the PCR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Koldehoff M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koldehoff, M. (2015). Targeting bcr-abl Transcripts with siRNAs in an Imatinib-Resistant Chronic Myeloid Leukemia Patient: Challenges and Future Directions. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics