Cell-Internalization SELEX: Method for Identifying Cell-Internalizing RNA Aptamers for Delivering siRNAs to Target Cells

  • William H. Thiel
  • Kristina W. Thiel
  • Katie S. Flenker
  • Tom Bair
  • Adam J. Dupuy
  • James O. McNamaraII
  • Francis J. Miller
  • Paloma H. Giangrande
Part of the Methods in Molecular Biology book series (MIMB, volume 1218)


After a decade of work to address cellular uptake, the principal obstacle to RNAi-based therapeutics, there is now well-deserved, renewed optimism about RNAi-based drugs. Phase I and II studies have shown safe, strong, and durable-gene knockdown (80–90 %, lasting for a month after a single injection) and/or clinical benefit in treating several liver pathologies. Although promising, these studies have also highlighted the need for robust delivery techniques to develop RNAi therapeutics for treating other organ systems and diseases. Conjugation of siRNAs to cell-specific, synthetic RNA ligands (aptamers) is being proposed as a viable solution to this problem. While encouraging, the extended use of RNA aptamers as a delivery tool for siRNAs awaits the identification of RNA aptamer sequences capable of targeting and entering the cytoplasm of many different cell types. We describe a cell-based selection process for the rapid identification and characterization of RNA aptamers suited for delivering siRNA drugs into the cytoplasm of target cells. This process, termed “cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment),” entails the combination of multiple sophisticated technologies, including cell culture-based SELEX procedures, next-generation sequencing (NGS), and novel bioinformatics tools.

Key words

RNA aptamers Systematic evolution of ligands by exponential enrichment (SELEX) Cell-internalization SELEX Cell-targeted aptamers Next-generation sequencing (NGS) Bioinformatics Quantitative PCR 


  1. 1.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550PubMedCrossRefGoogle Scholar
  2. 2.
    Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222PubMedCrossRefGoogle Scholar
  3. 3.
    Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132PubMedCrossRefGoogle Scholar
  4. 4.
    Apte RS (2008) Pegaptanib sodium for the treatment of age-related macular degeneration. Expert Opin Pharmacother 9:499–508PubMedCrossRefGoogle Scholar
  5. 5.
    Sundaram P, Kurniawan H, Byrne ME, Wower J (2013) Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 48:259–271PubMedCrossRefGoogle Scholar
  6. 6.
    Thiel KW, Giangrande PH (2010) Intracellular delivery of rna-based therapeutics using aptamers. Ther Deliv 1:849–861PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cerchia L, Giangrande PH, McNamara JO, de Franciscis V (2009) Cell-specific aptamers for targeted therapies. Methods Mol Biol 535:59–78PubMedCrossRefGoogle Scholar
  8. 8.
    Zhou J, Rossi JJ (2011) Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zhou J, Bobbin ML, Burnett JC, Rossi JJ (2012) Current progress of RNA aptamer-based therapeutics. Front Genet 3:234PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477PubMedPubMedCentralGoogle Scholar
  11. 11.
    Sundaram P, Wower J, Byrne ME (2012) A nanoscale drug delivery carrier using nucleic acid aptamers for extended release of therapeutic. Nanomedicine 8:1143–1151PubMedCrossRefGoogle Scholar
  12. 12.
    McNamara JO II, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015PubMedCrossRefGoogle Scholar
  13. 13.
    Pastor F, Kolonias D, Giangrande PH, Gilboa E (2010) Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature 465:227–230PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO II, Giangrande PH (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wheeler LA, Vrbanac V, Trifonova R, Brehm MA, Gilboa-Geffen A, Tanno S, Greiner DL, Luster AD, Tager AM, Lieberman J (2013) Durable knockdown and protection from hiv transmission in humanized mice treated with gel-formulated cd4 aptamer-siRNA chimeras. Mol Ther 21:1378–1389PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, Smith DD, Swiderski P, Rossi JJ, Akkina R (2011) An aptamer-siRNA chimera suppresses hiv-1 viral loads and protects from helper cd4(+) t cell decline in humanized mice. Sci Transl Med 3:66ra66CrossRefGoogle Scholar
  17. 17.
    Ni X, Zhang Y, Ribas J, Chowdhury WH, Castanares M, Zhang Z, Laiho M, DeWeese TL, Lupold SE (2011) Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest 121:2383–2390PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefGoogle Scholar
  19. 19.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science 249:505–510PubMedCrossRefGoogle Scholar
  20. 20.
    Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X, Stockdale KR, Rothman AM, Hernandez FJ, McNamara JO II, Giangrande PH (2012) Delivery of chemo-sensitizing siRNAs to her2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 40:6319–6337PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Thiel WH, Bair T, Peek AS, Liu X, Dassie J, Stockdale KR, Behlke MA, Miller FJ Jr, Giangrande PH (2012) Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection. PLoS One 7:e43836PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Huang YZ, Hernandez FJ, Gu B, Stockdale KR, Nanapaneni K, Scheetz TE, Behlke MA, Peek AS, Bair T, Giangrande PH, McNamara JO II (2012) RNA aptamer-based functional ligands of the neurotrophin receptor, trkb. Mol Pharmacol 82:623–635PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Thiel WH, Bair T, Thiel WK, Dassie JP, Rockey WM, Howell CA, Liu XY, Dupuy AJ, Huang L, Owczarzy R, Behlke MA, McNamara JO, Giangrande PH (2011) Nucleotide bias observed with a short selex RNA aptamer library. Nucleic Acid Ther 21:253–263PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Meyer S, Maufort JP, Nie J, Stewart R, McIntosh BE, Conti LR, Ahmad KM, Soh HT, Thomson JA (2013) Development of an efficient targeted cell-selex procedure for DNA aptamer reagents. PLoS One 8:e71798PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Reiss DJ, Howard FM, Mobley HL (2012) A novel approach for transcription factor analysis using selex with high-throughput sequencing (tfast). PLoS One 7:e42761PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zimmermann B, Gesell T, Chen D, Lorenz C, Schroeder R (2010) Monitoring genomic sequences during selex using high-throughput sequencing: neutral selex. PLoS One 5:e9169PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jagannathan V, Roulet E, Delorenzi M, Bucher P (2006) Htpselex–a database of high-throughput selex libraries for transcription factor binding sites. Nucleic Acids Res 34:D90–D94PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Roulet E, Busso S, Camargo AA, Simpson AJ, Mermod N, Bucher P (2002) High-throughput selex sage method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20:831–835PubMedCrossRefGoogle Scholar
  29. 29.
    McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E (2008) Multivalent 4-1bb binding aptamers costimulate cd8+ t cells and inhibit tumor growth in mice. J Clin Invest 118:376–386PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sousa R, Padilla R (1995) A mutant t7 RNA polymerase as a DNA polymerase. EMBO J 14:4609–4621PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hernandez FJ, Stockdale KR, Huang L, Horswill AR, Behlke MA, McNamara JO II (2012) Degradation of nuclease-stabilized RNA oligonucleotides in mycoplasma-contaminated cell culture media. Nucleic Acid Ther 22:58–68PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • William H. Thiel
    • 1
  • Kristina W. Thiel
    • 1
  • Katie S. Flenker
    • 1
  • Tom Bair
    • 1
  • Adam J. Dupuy
    • 2
  • James O. McNamaraII
    • 1
  • Francis J. Miller
    • 1
  • Paloma H. Giangrande
    • 1
    • 3
  1. 1.Department of Internal MedicineUniversity of IowaIowa CityUSA
  2. 2.Anatomy & Cell BiologyUniversity of IowaIowa CityUSA
  3. 3.Department of Radiation OncologyUniversity of IowaIowa CityUSA

Personalised recommendations