Skip to main content

Probing Plasmodesmata Function with Biochemical Inhibitors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

Abstract

To investigate plasmodesmata (PD) function, a useful technique is to monitor the effect on cell-to-cell transport of applying an inhibitor of a physiological process, protein, or other cell component of interest. Changes in PD transport can then be monitored in one of several ways, most commonly by measuring the cell-to-cell movement of fluorescent tracer dyes or of free fluorescent proteins. Effects on PD structure can be detected in thin sections of embedded tissue observed using an electron microscope, most commonly a Transmission Electron Microscope (TEM). This chapter outlines commonly used inhibitors, methods for treating different tissues, how to detect altered cell-to-cell transport and PD structure, and important caveats.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Faulkner CR, Blackman LM, Cordwell SJ, Overall RL (2005) Proteomic identification of putative plasmodesmatal proteins from Chara corallina. Proteomics 5:2866–2875

    Article  PubMed  CAS  Google Scholar 

  2. Bayer EM, Bottrill AR, Walshaw J et al (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Article  PubMed  CAS  Google Scholar 

  3. Faulkner C, Maule A (2011) Opportunities and successes in the search for plasmodesmal proteins. Protoplasma 248:27–38

    Article  PubMed  CAS  Google Scholar 

  4. Benitez-Alfonso Y, Cilia M, San RA et al (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106:3615–3620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Stonebloom S, Burch-Smith T, Kim I et al (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Natl Acad Sci U S A 106: 17229–17234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kobayashi K, Otegui MS, Krishnakumar S et al (2007) INCREASED SIZE EXCLUSION LIMIT2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19:1885–1897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Kim I, Hempel FD, Sha K et al (2002) Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 129: 1261–1272

    PubMed  CAS  Google Scholar 

  8. Avisar D, Prokhnevsky AI, Dolja VV (2008) Class VIII myosins are required for plasmodesmatal localization of a closterovirus hsp70 homolog. J Virol 82:2836–2843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yokota E, Ueda S, Tamura K et al (2009) An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. J Exp Bot 60: 197–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Wu S, Gallagher KL (2013) Intact microtubules are required for the intercellular movement of the SHORTROOT transcription factor. Plant J 74:148–159

    Article  PubMed  CAS  Google Scholar 

  12. Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81–85

    Article  PubMed  CAS  Google Scholar 

  13. Radford JE, White RG (2011) Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. Protoplasma 248: 205–216

    Article  PubMed  CAS  Google Scholar 

  14. Stonebloom S, Brunkard JO, Cheung AC et al (2012) Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol 158: 190–199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gale EF, Wayman F, Orlean PA (1984) The action of 2-deoxy-D-glucose on the incorporation of glucose into (1-3)-ß-glucan in stationary phase cultures of Candida albicans. J Gen Microbiol 130:3303–3311

    PubMed  CAS  Google Scholar 

  16. Jaffe MJ, Leopold AC (1984) Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose. Planta 161:20–26

    Article  PubMed  CAS  Google Scholar 

  17. Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  18. Radford JE, White RG (2001) Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits. Protoplasma 216:47–55

    Article  PubMed  CAS  Google Scholar 

  19. Fenteany G, Zhu S (2003) Small-molecule inhibitors of actin dynamics and cell motility. Curr Top Med Chem 3:593–616

    Article  PubMed  CAS  Google Scholar 

  20. Baggett AW, Cournia Z, Han MS et al (2012) Structural characterization and computer-aided optimization of a small-molecule inhibitor of the Arp2/3 complex, a key regulator of the actin cytoskeleton. ChemMedChem 7: 1286–1294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Bonello T, Coombes J, Schevzov G et al (2012) Therapeutic targeting of the actin cytoskeleton in cancer. In: Cytoskeleton and human disease. Humana, Totowa, NJ, pp 181–200

    Chapter  Google Scholar 

  22. Fitzgibbon J, Beck M, Zhou J et al (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25:57–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Duckett CM, Oparka KJ, Prior DAM et al (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120:3247–3255

    CAS  Google Scholar 

  24. Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Realtime imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6:759–766

    Article  Google Scholar 

  25. Wang N, Fisher DB (1994) The use of fluorescent tracers to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiol 104:17–27

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Wang HL, Offler CE, Patrick JW, Ugalde TD (1994) The cellular pathway of photosynthate transfer in the developing wheat grain. I. Delineation of a potential transfer pathway using fluorescent dyes. Plant Cell Environ 17: 257–266

    Article  CAS  Google Scholar 

  27. Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem-mobile, symplastic tracer, an evaluation using confocal laser scanning microscopy. J Exp Bot 47:439–445

    Article  CAS  Google Scholar 

  28. Wang X, Sager R, Cui W et al (2013) Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 35:2315–2329

    Article  Google Scholar 

  29. Tyree MT, Tammes PML (1975) Translocation of uranin in the symplasm of staminal hairs of Tradescantia. Can J Bot 53:2038–2046

    Article  CAS  Google Scholar 

  30. Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea. I. A study of cell ultrastructure and cell-to-cell passage of molecular probes. Protoplasma 113:193–201

    Article  CAS  Google Scholar 

  31. Goodwin PB (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124–130

    Article  PubMed  CAS  Google Scholar 

  32. Faulkner C, Petutschnig E, Benitez-Alfonso Y et al (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110:9166–9170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Storms MHM, van der Schoot C, Prins M et al (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    Article  CAS  Google Scholar 

  34. Rutschow HL, Baskin TI, Kramer EM (2011) Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol 155: 1817–1826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Baskin TI, Bivens NJ (1995) Stimulation of radial expansion in arabidopsis roots by inhibitors of actomyosin and vesicle secretion but not by various inhibitors of metabolism. Planta 197:514–521

    Article  PubMed  CAS  Google Scholar 

  36. Baskin TI, Wilson JE (1997) lnhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113:493–502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Roberts AG, Cruz SS, Roberts IM et al (1997) Phloem unloading in sink leaves of Nicotiana benthamiana, comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9:1381–1396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Christensen NM, Faulkner C, Oparka K (2009) Evidence for unidirectional flow through plasmodesmata. Plant Physiol 150:96–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Urbanus SL, Dinh QK, Angenent GC, Immink RGH (2010) Investigation of MADS domain transcription factor dynamics in the floral meristem. Plant Signal Behav 5:1260–1262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Chapman S, Faulkner C, Kaiserli E et al (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A 105: 20038–20043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Mukherjee A, Walker J, Weyant KB, Schroeder CM (2013) Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. PLoS One 8(5):e64753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer yellow. Planta 164:473–479

    Article  PubMed  CAS  Google Scholar 

  43. Scott AS, Wyatt S, Tsou P-L et al (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26:1125–1132

    PubMed  CAS  Google Scholar 

  44. Collings DA (2013) Subcellular localization of transiently expressed fluorescent fusion proteins. In: Chapter 16 in Legume genomics: methods and protocols. Methods in molecular biology, vol 1069. doi:10.1007/978-1-62703-613-9_16

  45. Erwee MG, Goodwin PB (1983) Characterisation of the Egeria densa Planch. leaf symplast. Inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158(320):328

    Google Scholar 

  46. Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    Article  PubMed  CAS  Google Scholar 

  47. Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174:45–49

    Article  CAS  Google Scholar 

  48. Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    Article  PubMed  CAS  Google Scholar 

  49. Spanswick RM (1972) Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102:215–227

    Article  PubMed  CAS  Google Scholar 

  50. Overall RL, Gunning BES (1982) Intercellular communication in Azolla roots: II. Electrical coupling. Protoplasma 111:151–160

    Article  Google Scholar 

  51. Staiger CJ (2000) Signaling to the cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288

    Article  PubMed  CAS  Google Scholar 

  52. Collings DA (2008) Crossed wires: interactions and cross-talk between the microtubule and microfilament networks in plants. In: Nick P (ed) Plant cell monographs: plant microtubules, development, and flexibility. Springer, Berlin, pp 47–82

    Google Scholar 

  53. Heinlein M, Padgett HS, Gens JS et al (1998) Changing patterns of localization of the Tobacco Mosaic Virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10: 1107–1120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  55. Mooré D (1980) Effects of hexose analogues on fungi: mechanisms of inhibition and of resistance. New Phytol 87:487–515

    Article  Google Scholar 

  56. Breier A, Crane AM, Kennedy C, Sokoloff L (1993) The effects of pharmacologic doses of 2-deoxy-D-glucose on local cerebral blood flow in the awake, unrestrained rat. Brain Res 618:277–282

    Article  PubMed  CAS  Google Scholar 

  57. Datema R, Schwartz RT, Rivas LA, Pont-Lezica R (1983) Inhibition of β-1,4-glucan biosynthesis by deoxyglucose. Plant Physiol 71:76–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Stone BA, Clarke AE (1992) Chemistry and biology of (1→3)-β-glucans. La Trobe University Press, Bundoora, VIC

    Google Scholar 

  59. Peucelle A, Louvet R, Johansen JN et al (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    Article  Google Scholar 

  60. Martens HJ, Hansen M, Schulz A (2004) Caged probes: a novel tool in studying symplasmic transport in plant tissues. Protoplasma 223:63–66

    Article  PubMed  CAS  Google Scholar 

  61. Gilroy S, Read N, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346:769–771

    Article  PubMed  CAS  Google Scholar 

  62. Ward JL, Beale MH (1995) Caged plant hormones. Phytochemistry 38:811–816

    Article  CAS  Google Scholar 

  63. Allan AC, Ward JL, Beale MH, Trewavas AJ (1998) Caged plant growth regulators. Methods Enzymol 291:474–483

    Article  CAS  Google Scholar 

  64. Kusaka N, Maisch J, Nick P et al (2009) Manipulation of intracellular auxin in a single cell by light with esterase-resistant caged auxins. ChemBioChem 10:2195–2202

    Article  PubMed  CAS  Google Scholar 

  65. Tucker EB (1987) Cytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpurea. Protoplasma 137: 140–144

    Article  Google Scholar 

  66. Tucker EB, Tucker JE (1993) Cell-to-cell diffusion selectivity in staminal hairs of Setcreasea purpurea. Protoplasma 174:36–44

    Article  Google Scholar 

  67. Zhu T, Lucas WJ, Rost TL (1998) Directional cell-to-cell communication in the Arabidopsis root apical meristem. I. An ultrastructural and functional analysis. Protoplasma 203:35–47

    Article  Google Scholar 

  68. Liang DC, White RG, Waterhouse PM (2012) Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, non-vascular, cell to cell movement. Plant Physiol 159:984–1000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Oparka KJ, Prior DAM (1988) Movement of lucifer yellow CH in potato tuber storage tissue: a comparison of symplastic and apoplastic transport. Planta 176:533–540

    Article  PubMed  CAS  Google Scholar 

  70. Volkmann D, Mori T, Tirlapur UK et al (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata/pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    Article  PubMed  CAS  Google Scholar 

  71. Erwee MG, Goodwin PB (1984) Characterisation of the Egeria densa leaf symplast: response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma 122: 162–168

    Article  CAS  Google Scholar 

  72. Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Article  Google Scholar 

  73. Su S, Liu Z, Chen C et al (2010) Cucumber Mosaic Virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22: 1373–1387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Stadler R, Wright KM, Lauterbach C et al (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331

    Article  PubMed  CAS  Google Scholar 

  75. Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Simpson I (1978) Labelling of small molecules with fluorescein. Anal Biochem 89:304–305

    Article  PubMed  CAS  Google Scholar 

  77. Bostrom TE, Walker NA (1975) Intercellular transport in plants I. The flux of chloride and the electric resistance in Chara. J Exp Bot 26: 767–782

    Article  CAS  Google Scholar 

  78. Krasavina MS, Ktitorova IN, Burmistrova NA (2001) Electrical conductance of cell-to-cell junctions and the cytoskeleton of plant cells. Russ J Plant Physiol 48:741–748

    Article  CAS  Google Scholar 

  79. Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 20:6291–6296

    Article  Google Scholar 

  80. Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    Article  PubMed  CAS  Google Scholar 

  81. Dale N, Lunn G, Fensom DS, Williams EJ (1983) Rates of axial transport of 11C and 14C in Characean cells: faster than visible streaming? J Exp Bot 34:130–143

    Article  CAS  Google Scholar 

  82. Drake G (1979) Electrical coupling, potentials, and resistances in oat coleoptiles: effects of azide and cyanide. J Exp Bot 30:719–725

    Article  CAS  Google Scholar 

  83. Reynolds ES (1963) Electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Janine Radford at Monash University; Robyn Overall, Terena Holdaway-Clarke, Debbie Barton, and other Sydney University colleagues; Mark Talbot, summer students, and others in my lab at CSIRO Plant Industry for tips, tricks, comments, and assistance along the way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary G. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

White, R.G. (2015). Probing Plasmodesmata Function with Biochemical Inhibitors. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics