Skip to main content

Methods for Library-Scale Computational Protein Design

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

Faced with a protein engineering challenge, a contemporary researcher can choose from myriad design strategies. Library-scale computational protein design (LCPD) is a hybrid method suitable for the engineering of improved protein variants with diverse sequences. This chapter discusses the background and merits of several practical LCPD techniques. First, LCPD methods suitable for delocalized protein design are presented in the context of example design calculations for cellobiohydrolase II. Second, localized design methods are discussed in the context of an example design calculation intended to shift the substrate specificity of a ketol-acid reductoisomerase Rossmann domain from NADPH to NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10:866–876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13:3–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364

    Article  PubMed  CAS  Google Scholar 

  4. Miklos AE, Kluwe C, Der BS, Pai S, Sircar A, Hughes RA et al (2012) Structure-based design of supercharged, highly thermoresistant antibodies. Chem Biol 19:449–455

    Article  PubMed  CAS  Google Scholar 

  5. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458:859–864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  PubMed  Google Scholar 

  7. Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA, Thomas LM et al (2012) Iterative approach to computational enzyme design. Proc Natl Acad Sci U S A 109:3790–3795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Dantas G, Kuhlman B, Callender D, Wong M, Baker D (2003) A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J Mol Biol 332:449–460

    Article  PubMed  CAS  Google Scholar 

  9. Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16:378–384

    Article  PubMed  CAS  Google Scholar 

  10. Karanicolas J, Com JE, Chen I, Joachmiak LA, Dym O, Peck SH et al (2011) A de novo protein binding pair by computational design and directed evolution. Mol Cell 42:250–260

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S, Houk KN et al (2012) Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc Natl Acad Sci U S A 109:10358–10363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103:5869–5874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gromiha MM (2007) Prediction of protein stability upon point mutations. Biochem Soc Trans 35:1569–1573

    Article  PubMed  CAS  Google Scholar 

  14. Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680

    Article  PubMed  CAS  Google Scholar 

  15. Bradley LH, Thumfort PP, Hecht MH (2006) De novo proteins from binary-patterned combinatorial libraries. Methods Mol Biol 340:53–69

    PubMed  CAS  Google Scholar 

  16. Bradley LH, Wei Y, Thumfort P, Wurth C, Hecht MH (2007) Protein design by binary patterning of polar and nonpolar amino acids. Methods Mol Biol 352:155–166

    PubMed  CAS  Google Scholar 

  17. Pantazes RJ, Saraf MC, Maranas CD (2007) Optimal protein library design using recombination or point mutations based on sequence-based scoring functions. Protein Eng Des Sel 20:361–373

    Article  PubMed  CAS  Google Scholar 

  18. Steipe B, Schiller B, Plückthun A, Steinbacher S (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192

    Article  PubMed  CAS  Google Scholar 

  19. Lehmann M, Kostrewa D, Wyss M, Brugger R, D'Arcy A, Pasamontes L et al (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng 13:49–57

    Article  PubMed  CAS  Google Scholar 

  20. Amin N, Liu A, Ramer S, Aehle W, Meijer D, Metin M et al (2004) Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng Des Sel 17:787

    Article  PubMed  CAS  Google Scholar 

  21. Kono H, Wang W, Saven JG (2007) Combinatorial protein design strategies using computational methods. Methods Mol Biol 352:3–22

    PubMed  CAS  Google Scholar 

  22. Dunbrack RL Jr (2002) Rotamer libraries in the 21st century. Curr Opin Struct Biol 12:431–440

    Article  PubMed  CAS  Google Scholar 

  23. Shetty RP, De Bakker PIW, DePristo MA, Blundell TL (2003) Advantages of fine-grained side chain conformer libraries. Protein Eng 16:963–969

    Article  PubMed  CAS  Google Scholar 

  24. Hallen MA, Keedy DA, Donald BR (2012) Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 81:18–39

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mena MA, Treynor TP, Mayo SL, Daugherty PS (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24:1569–1571

    Article  PubMed  CAS  Google Scholar 

  26. Allen BD, Nisthal A, Mayo SL (2010) Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles. Proc Natl Acad Sci U S A 107:19838–19843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Chica RA, Moore MM, Allen BD, Mayo SL (2010) Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries. Proc Natl Acad Sci U S A 107:20257–20262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Drummond DA, Silberg JJ, Meyer MM, Wilke CO, Arnold FH (2005) On the conservative nature of intragenic recombination. Proc Natl Acad Sci U S A 102:5380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  PubMed  CAS  Google Scholar 

  30. Harayama S (1998) Artificial evolution by DNA shuffling. Trends Biotechnol 16:76–82

    Article  PubMed  CAS  Google Scholar 

  31. Meyer MM, Silberg JJ, Voigt CA, Endelman JB, Mayo SL, Wang ZG et al (2003) Library analysis of SCHEMA-guided protein recombination. Protein Sci 12:1686–1693

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH (2006) Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol 4:e112

    Article  PubMed  PubMed Central  Google Scholar 

  33. Romero PA, Stone E, Lamb C, Chantranupong L, Krause A, Miklos AE (2012) SCHEMA designed variants of human arginase I & Ii reveal sequence elements important to stability and catalysis. ACS Synth Biol 1:221–228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S et al (2009) A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci U S A 106:5610–5615

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Heinzelman P, Komor R, Kanaan A, Romero P, Yu X, Mohler S et al (2010) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23:871–880

    Article  PubMed  CAS  Google Scholar 

  36. Komor RS, Romero PA, Xie CB, Arnold FH (2012) Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Eng Des Sel 25:827–833

    Article  PubMed  CAS  Google Scholar 

  37. Smith MA, Rentmeister A, Snow CD, Wu T, Farrow MF, Mingardon F et al (2012) A diverse set of family 48 bacterial cellulases created by structure-guided recombination. FEBS J 279:4453–4465

    Article  PubMed  CAS  Google Scholar 

  38. Hiraga K, Arnold FH (2003) General method for sequence-independent site-directed chimeragenesis. J Mol Biol 330:287–296

    Article  PubMed  CAS  Google Scholar 

  39. Farrow MF, Arnold FH (2010) Combinatorial recombination of gene fragments to construct a library of chimeras. Curr Protoc Protein Sci Chapter 26, Unit 26.2

    Google Scholar 

  40. Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278:82–87

    Article  PubMed  CAS  Google Scholar 

  41. Desmet J, Spriet J, Lasters I (2002) Fast and accurate side‐chain topology and energy refinement (FASTER) as a new method for protein structure optimization. Proteins 48:31–43

    Article  PubMed  CAS  Google Scholar 

  42. Jacak R, Leaver-Fay A, Kuhlman B (2012) Computational protein design with explicit consideration of surface hydrophobic patches. Proteins 80:825–838

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Meyer MM, Hiraga K, Arnold FH (2006) Combinatorial recombination of gene fragments to construct a library of chimeras. Curr Protoc Protein Sci Chapter 26, Unit 26.2

    Google Scholar 

  45. Romero PA, Arnold FH (2012) Random field model reveals structure of the protein recombinational landscape. PLoS Comput Biol 8:e1002713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Loksha IV, Maiolo JR 3rd, Hong CW, Ng A, Snow CD (2009) SHARPEN-systematic hierarchical algorithms for rotamers and proteins on an extended network. J Comput Chem 30:999–1005

    Article  PubMed  CAS  Google Scholar 

  47. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Dunbrack RL Jr, Cohen FE (1997) Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 6:1661–1681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  PubMed  CAS  Google Scholar 

  50. Heinzelman P, Snow CD, Smith MA, Yu X, Kannan A, Boulware K et al (2009) SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 284:26229–26233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Voigt CA, Martinez C, Wang ZG, Mayo SL, Arnold FH (2002) Protein building blocks preserved by recombination. Nat Struct Mol Biol 9:553–558

    CAS  Google Scholar 

  52. Moore GL, Maranas CD (2003) Identifying residue–residue clashes in protein hybrids by using a second-order mean-field approach. Proc Natl Acad Sci U S A 100:5091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Saraf MC, Horswill AR, Benkovic SJ, Maranas CD (2004) FamClash: a method for ranking the activity of engineered enzymes. Proc Natl Acad Sci U S A 101:4142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Endelman JB, Silberg JJ, Wang ZG, Arnold FH (2004) Site-directed protein recombination as a shortest-path problem. Protein Eng Des Sel 17:589–594

    Article  PubMed  CAS  Google Scholar 

  55. Silberg JJ, Endelman JB, Arnold FH (2004) SCHEMA-guided protein recombination. Methods Enzymol 388:35–42

    Article  PubMed  CAS  Google Scholar 

  56. Ingolfsson H, Yona G (2008) Protein domain prediction. Methods Mol Biol 426:117–143

    Article  PubMed  CAS  Google Scholar 

  57. Li Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 25:1051–1056

    Article  PubMed  CAS  Google Scholar 

  58. Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci U S A 93:13–20

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Grosdidier S, Fernández-Recio J (2008) Identification of hot-spot residues in protein-protein interactions by computational docking. BMC Bioinformatics 9:447

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch EM et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Mattos C et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30:543–548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Kortemme T, Baker D (2004) Computational design of protein–protein interactions. Curr Opin Chem Biol 8:91–97

    Article  PubMed  CAS  Google Scholar 

  63. Salgado EN, Radford RJ, Tezcan FA (2010) Metal-directed protein self-assembly. Acc Chem Res 43:661–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A 105:3733–3738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Lawrence MS, Phillips KJ, Liu DR (2007) Supercharging proteins can impart unusual resilience. J Am Chem Soc 129:10110–10112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Das A, Wei Y, Pelczer I, Hecht MH (2011) Binding of small molecules to cavity forming mutants of a de novo designed protein. Protein Sci 20:702–711

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Liu L, Baase WA, Michael MM, Matthews BW (2009) Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme. Biochemistry 48:8842–8851

    Article  PubMed  CAS  Google Scholar 

  68. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352

    Article  PubMed  CAS  Google Scholar 

  69. Tang L, Gao H, Zhu X, Wang X, Zhou M, Jiang R (2012) Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52:149–158

    PubMed  CAS  Google Scholar 

  70. Georgescu R, Bandara G, Sun L (2003) Saturation mutagenesis. Methods Mol Biol 231:75–83

    PubMed  CAS  Google Scholar 

  71. Denault M, Pelletier JN (2007) Protein library design and screening: working out the probabilities. Methods Mol Biol 352:127–154

    PubMed  CAS  Google Scholar 

  72. Mena MA, Daugherty PS (2005) Automated design of degenerate codon libraries. Protein Eng Des Sel 18:559–561

    Article  PubMed  CAS  Google Scholar 

  73. Patrick WM, Firth AE (2005) Strategies and computational tools for improving randomized protein libraries. Biomol Eng 22:105–112

    Article  PubMed  CAS  Google Scholar 

  74. Bastian S, Arnold FH (2012) Reversal of NAD(P)H cofactor dependence by protein engineering. Methods Mol Biol 834:17–31

    Article  PubMed  CAS  Google Scholar 

  75. Schrödinger L (2010) The PyMOL molecular graphics system, version 1.3r1

    Google Scholar 

  76. Fischer JD, Mayer CE, Söding J (2008) Prediction of protein functional residues from sequence by probability density estimation. Bioinformatics 24:613–620

    Article  PubMed  CAS  Google Scholar 

  77. Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjölander K (2010) Active site prediction using evolutionary and structural information. Bioinformatics 26:617–624

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Chen MMY, Snow CD, Vizcarra CL, Mayo SL, Arnold FH (2012) Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 25:171–178

    Article  PubMed  CAS  Google Scholar 

  79. Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    Article  PubMed  CAS  Google Scholar 

  80. Rane MJ, Calvo KC (1997) Reversal of the nucleotide specificity of ketol acid reductoisomerase by site-directed mutagenesis identifies the NADPH binding site. Arch Biochem Biophys 338:83–89

    Article  PubMed  CAS  Google Scholar 

  81. Fuglsang A (2003) Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif 31:247–249

    Article  PubMed  CAS  Google Scholar 

  82. Chiang LW, Kovari I, Howe MM (1993) Mutagenic oligonucleotide-directed PCR amplification (Mod-PCR): an efficient method for generating random base substitution mutations in a DNA sequence element. PCR Methods Appl 2:210–217

    Article  PubMed  CAS  Google Scholar 

  83. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387

    Article  PubMed  CAS  Google Scholar 

  84. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2. 0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Yin S, Ding F, Dokholyan NV (2010) Computational evaluation of protein stability change upon mutations. Methods Mol Biol 634:189–201

    Article  PubMed  CAS  Google Scholar 

  86. Zhang Z, Wang L, Gao Y, Zhang J, Zhenirovskyy M, Alexov E (2012) Predicting folding free energy changes upon single point mutations. Bioinformatics 28:664–671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Mandell DJ, Kortemme T (2009) Backbone flexibility in computational protein design. Curr Opin Biotechnol 20:420–428

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Snow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Johnson, L.B., Huber, T.R., Snow, C.D. (2014). Methods for Library-Scale Computational Protein Design. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics