Skip to main content

Design, Synthesis, and Study of Fluorinated Proteins

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

Highly fluorinated analogs of hydrophobic amino acids have proven to be generally effective in increasing the thermodynamic stability of proteins. These non-proteogenic amino acids can be incorporated into both α-helix and β-sheet structural motifs and generally enhance protein stability towards unfolding by heat and chemical denaturants, and retard their degradation by proteases. Recent detailed structural and thermodynamic studies have demonstrated that the increase in buried hydrophobic surface area that accompanies fluorination is primarily responsible for the stabilizing properties of fluorinated side chains. Fluorination appears to be a particularly useful strategy for increasing protein stability because fluorinated amino acids closely retain the shape of the side chain, and are thus minimally perturbing to protein structure and function. The first part of this chapter discusses some examples of highly fluorinated model proteins designed by our laboratory and protocols for their synthesis. In the second part, methods for determining their thermodynamic stability, along with conditions that have proven to be useful for crystallizing these proteins, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suzuki Y, Buer BC, Al-Hashimi HM, Marsh ENG (2011) Using fluorine nuclear magnetic resonance to probe changes in the structure and dynamics of membrane-active peptides interacting with lipid bilayers. Biochemistry 50:5979–5987

    Article  PubMed  CAS  Google Scholar 

  2. Dalvit C, Vulpetti A (2011) Fluorine–protein interactions and 19F NMR isotropic chemical shifts: an empirical correlation with implications for drug design. ChemMedChem 6:104–114

    Article  PubMed  CAS  Google Scholar 

  3. Danielson MA, Falke JJ (1996) Use of F-19 NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectrosc 26:293–370

    Article  CAS  Google Scholar 

  5. Luchette PA, Prosser RS, Sanders CR (2002) Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy. J Am Chem Soc 124:1778–1781

    Article  PubMed  CAS  Google Scholar 

  6. Evanics F, Kitevski JL, Bezsonova I, Forman-Kay J, Prosser RS (2007) 19F NMR studies of solvent exposure and peptide binding to an SH3 domain. Biochim Biophys Acta 1770:221–230

    Article  PubMed  CAS  Google Scholar 

  7. Yu J-X, Kodibagkar VD, Cui W, Mason RP (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848

    Article  PubMed  CAS  Google Scholar 

  8. Buer BC, Chugh J, Al-Hashimi HM, Marsh ENG (2010) Using fluorine nuclear magnetic resonance to probe the interaction of membrane-active peptides with the lipid bilayer. Biochemistry 49:5760–5765

    Article  PubMed  CAS  Google Scholar 

  9. Khan F, Kuprov I, Craggs TD, Hore PJ, Jackson SE (2006) 19F NMR studies of the native and denatured states of green fluorescent protein. J Am Chem Soc 128:10729–10737

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki Y, Brender JR, Hartman K, Ramamoorthy A, Marsh ENG (2012) Alternative pathways of human islet amyloid polypeptide aggregation distinguished by 19F nuclear magnetic resonance-detected kinetics of monomer consumption. Biochemistry 51:8154–8162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Suzuki Y, Brender JR, Soper MT, Krishnamoorthy J, Zhou Y, Ruotolo BT, Kotov NA, Ramamoorthy A, Marsh ENG (2013) Resolution of oligomeric species during the aggregation of Aβ1-40 using 19F NMR. Biochemistry 52(11):1903–1912

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Müller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317:1881–1886

    Article  PubMed  Google Scholar 

  13. Buer BC, de la Salud-Bea R, Al Hashimi HM, Marsh ENG (2009) Engineering protein stability and specificity using fluorous amino acids: the importance of packing effects. Biochemistry 48:10810–10817

    Article  PubMed  CAS  Google Scholar 

  14. Buer BC, Levin BJ, Marsh ENG (2012) Influence of fluorination on the thermodynamics of protein folding. J Am Chem Soc 134:13027–13034

    Article  PubMed  CAS  Google Scholar 

  15. Buer BC, Meagher JL, Stuckey JA, Marsh ENG (2012) Structural basis for the enhanced stability of highly fluorinated proteins. Proc Natl Acad Sci U S A 109:4810–4815

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Buer BC, Meagher JL, Stuckey JA, Marsh ENG (2012) Comparison of the structures and stabilities of coiled-coil proteins containing hexafluoroleucine and t-butylalanine provides insight into the stabilizing effects of highly fluorinated amino acid side-chains. Protein Sci 21:1705–1715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Gottler LM, de la Salud-Bea R, Marsh ENG (2008) The fluorous effect in proteins: properties of α4F6, a 4-α-helix bundle protein with a fluorocarbon core. Biochemistry 47:4484–4490

    Article  PubMed  CAS  Google Scholar 

  18. Lee H-Y, Lee K-H, Al-Hashimi HM, Marsh ENG (2006) Modulating protein structure with fluorous amino acids: increased stability and native-like structure conferred on a 4-helix bundle protein by hexafluoroleucine. J Am Chem Soc 128:337–343

    Article  PubMed  CAS  Google Scholar 

  19. Lee K-H, Lee H-Y, Slutsky MM, Anderson JT, Marsh ENG (2004) Fluorous effect in proteins: de novo design and characterization of a four-α-helix bundle protein containing hexafluoroleucine. Biochemistry 43:16277–16284

    Article  PubMed  CAS  Google Scholar 

  20. Buer BC, Levin BJ, Marsh ENG (2013) Perfluoro-tert-butyl homoserine as a sensitive 19F NMR reporter for peptide–membrane interactions in solution. J Pept Sci 19:308–314

    Article  PubMed  CAS  Google Scholar 

  21. Gottler LM, de la Salud Bea R, Shelburne CE, Ramamoorthy A, Marsh ENG (2008) Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the β-hairpin antimicrobial peptide protegrin-1. Biochemistry 47:9243–9250

    Article  PubMed  CAS  Google Scholar 

  22. Gottler LM, Lee H-Y, Shelburne CE, Ramamoorthy A, Marsh ENG (2008) Using fluorous amino acids to modulate the biological activity of an antimicrobial peptide. Chembiochem 9:370–373

    Article  PubMed  CAS  Google Scholar 

  23. Bilgiçer B, Fichera A, Kumar K (2001) A coiled coil with a fluorous core. J Am Chem Soc 123:4393–4399

    Article  PubMed  Google Scholar 

  24. Bilgiçer B, Kumar K (2002) Synthesis and thermodynamic characterization of self-sorting coiled coils. Tetrahedron 58:4105–4112

    Article  Google Scholar 

  25. Bilgiçer B, Kumar K (2004) De novo design of defined helical bundles in membrane environments. Proc Natl Acad Sci U S A 101:15324–15329

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bilgiçer B, Xing X, Kumar K (2001) Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J Am Chem Soc 123:11815–11816

    Article  PubMed  Google Scholar 

  27. Campos-Olivas R, Aziz R, Helms GL, Evans JNS, Gronenborn AM (2002) Placement of 19F into the center of GB1: effects on structure and stability. FEBS Lett 517:55–60

    Article  PubMed  CAS  Google Scholar 

  28. Montclare JK, Son S, Clark GA, Kumar K, Tirrell DA (2009) Biosynthesis and stability of coiled-coil peptides containing (2S,4R)-5,5,5-trifluoroleucine and (2S,4S)-5,5,5-trifluoroleucine. Chembiochem 10:84–86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Son S, Tanrikulu IC, Tirrell DA (2006) Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. Chembiochem 7:1251–1257

    Article  PubMed  CAS  Google Scholar 

  30. Tang Y, Ghirlanda G, Petka WA, Nakajima T, DeGrado WF, Tirrell DA (2001) Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew Chem Int Ed 40:1494–1496

    Article  CAS  Google Scholar 

  31. Tang Y, Ghirlanda G, Vaidehi N, Kua J, Mainz DT, Goddard WA, DeGrado WF, Tirrell DA (2001) Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 40:2790–2796

    Article  PubMed  CAS  Google Scholar 

  32. Tang Y, Tirrell DA (2001) Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J Am Chem Soc 123:11089–11090

    Article  PubMed  CAS  Google Scholar 

  33. Wang P, Tang Y, Tirrell DA (2003) Incorporation of trifluoroisoleucine into proteins in vivo. J Am Chem Soc 125:6900–6906

    Article  PubMed  CAS  Google Scholar 

  34. Woll MG, Hadley EB, Mecozzi S, Gellman SH (2006) Stabilizing and destabilizing effects of phenylalanine → F5-phenylalanine mutations on the folding of a small protein. J Am Chem Soc 128:15932–15933

    Article  PubMed  CAS  Google Scholar 

  35. Meng H, Krishnaji ST, Beinborn M, Kumar K (2008) Influence of selective fluorination on the biological activity and proteolytic stability of glucagon-like peptide-1. J Med Chem 51:7303–7307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622

    Article  PubMed  CAS  Google Scholar 

  37. Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413

    Article  PubMed  CAS  Google Scholar 

  38. Chiu H-P, Kokona B, Fairman R, Cheng RP (2009) Effect of highly fluorinated amino acids on protein stability at a solvent-exposed position on an internal strand of protein G B1 domain. J Am Chem Soc 131:13192–13193

    Article  PubMed  CAS  Google Scholar 

  39. Chiu H-P, Suzuki Y, Gullickson D, Ahmad R, Kokona B, Fairman R, Cheng RP (2006) Helix propensity of highly fluorinated amino acids. J Am Chem Soc 128:15556–15557

    Article  PubMed  CAS  Google Scholar 

  40. Clark GA, Baleja JD, Kumar K (2012) Cross-strand interactions of fluorinated amino acids in β-hairpin constructs. J Am Chem Soc 134:17912–17921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Cornilescu G, Hadley EB, Woll MG, Markley JL, Gellman SH, Cornilescu CC (2007) Solution structure of a small protein containing a fluorinated side chain in the core. Protein Sci 16:14–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Horng J-C, Raleigh DP (2003) Φ-Values beyond the ribosomally encoded amino acids: kinetic and thermodynamic consequences of incorporating trifluoromethyl amino acids in a globular protein. J Am Chem Soc 125:9286–9287

    Article  PubMed  CAS  Google Scholar 

  43. Mortenson DE, Satyshur KA, Guzei IA, Forest KT, Gellman SH (2012) Quasiracemic crystallization as a tool to assess the accommodation of noncanonical residues in nativelike protein conformations. J Am Chem Soc 134:2473–2476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Naarmann N, Bilgiçer B, Meng H, Kumar K, Steinem C (2006) Fluorinated interfaces drive self-association of transmembrane α helices in lipid bilayers. Angew Chem Int Ed 45:2588–2591

    Article  CAS  Google Scholar 

  45. Senguen FT, Doran TM, Anderson EA, Nilsson BL (2011) Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16–22 self-assembly. Mol Biosyst 7:497–510

    Article  PubMed  CAS  Google Scholar 

  46. Wang P, Fichera A, Kumar K, Tirrell DA (2004) Alternative translations of a single RNA message: an identity switch of (2S,3R)-4,4,4-trifluorovaline between valine and isoleucine codons. Angew Chem Int Ed 43:3664–3666

    Article  CAS  Google Scholar 

  47. Jäckel C, Salwiczek M, Koksch B (2006) Fluorine in a native protein environment—how the spatial demand and polarity of fluoroalkyl groups affect protein folding. Angew Chem Int Ed 45:4198–4203

    Article  Google Scholar 

  48. Jäckel C, Seufert W, Thust S, Koksch B (2004) Evaluation of the molecular interactions of fluorinated amino acids with native polypeptides. Chembiochem 5:717–720

    Article  PubMed  Google Scholar 

  49. Pace CJ, Zheng H, Mylvaganam R, Kim D, Gao J (2012) Stacked fluoroaromatics as supramolecular synthons for programming protein dimerization specificity. Angew Chem Int Ed 51:103–107

    Article  CAS  Google Scholar 

  50. Pendley SS, Yu YB, Cheatham TE (2009) Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins 74:612–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Salwiczek M, Koksch B (2009) Effects of fluorination on the folding kinetics of a heterodimeric coiled coil. Chembiochem 10:2867–2870

    Article  PubMed  CAS  Google Scholar 

  52. Zheng H, Comeforo K, Gao J (2008) Expanding the fluorous arsenal: tetrafluorinated phenylalanines for protein design. J Am Chem Soc 131:18–19

    Article  Google Scholar 

  53. Zheng H, Gao J (2010) Highly specific heterodimerization mediated by quadrupole interactions. Angew Chem Int Ed 49:8635–8639

    Article  CAS  Google Scholar 

  54. Kwon O-H, Yoo TH, Othon CM, Van Deventer JA, Tirrell DA, Zewail AH (2010) Hydration dynamics at fluorinated protein surfaces. Proc Natl Acad Sci U S A 107:17101–17106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Yoder NC, Yüksel D, Dafik L, Kumar K (2006) Bioorthogonal noncovalent chemistry: fluorous phases in chemical biology. Curr Opin Chem Biol 10:576–583

    Article  PubMed  CAS  Google Scholar 

  56. Marsh ENG, Buer BC, Ramamoorthy A (2009) Fluorine—a new element in the design of membrane-active peptides. Mol Biosyst 5:1143–1147

    Article  PubMed  CAS  Google Scholar 

  57. Buer BC, Marsh ENG (2012) Fluorine: a new element in protein design. Protein Sci 21:453–462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Yoder NC, Kumar K (2002) Fluorinated amino acids in protein design and engineering. Chem Soc Rev 31:335–341

    Article  PubMed  CAS  Google Scholar 

  59. Salwiczek M, Nyakatura EK, Gerling UI, Ye S, Koksch B (2012) Fluorinated amino acids: compatibility with native protein structures and effects on protein–protein interactions. Chem Soc Rev 41:2135–2171

    Article  PubMed  CAS  Google Scholar 

  60. Jäckel C, Koksch B (2005) Fluorine in peptide design and protein engineering. Eur J Org Chem 2005:4483–4503

    Article  Google Scholar 

  61. Chothia C (1974) Hydrophobic bonding and accessible surface area in proteins. Nature 248:338–339

    Article  PubMed  CAS  Google Scholar 

  62. Eriksson A, Baase WA, Zhang X, Heinz D, Blaber M, Baldwin EP, Matthews B (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255:178–183

    Article  PubMed  CAS  Google Scholar 

  63. Richards FM (1977) Areas, volumes, packing, and protein structure. Annu Rev Biophys Bioeng 6:151–176

    Article  PubMed  CAS  Google Scholar 

  64. Baldwin RL (2013) Properties of hydrophobic free energy found by gas-liquid transfer. Proc Natl Acad Sci U S A 110:1670–1673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Marsh ENG (2000) Towards the nonstick egg: designing fluorous proteins. Chem Biol 7:R153–R157

    Article  PubMed  CAS  Google Scholar 

  66. Biffinger JC, Kim HW, DiMagno SG (2004) The polar hydrophobicity of fluorinated compounds. Chembiochem 5:622–627

    Article  PubMed  CAS  Google Scholar 

  67. Luo ZY, Zhang QS, Oderaotoshi Y, Curran DP (2001) Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 291:1766–1769

    Article  PubMed  CAS  Google Scholar 

  68. Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401

    Article  PubMed  CAS  Google Scholar 

  69. Nicholls A, Sharp KA, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:281–296

    Article  PubMed  CAS  Google Scholar 

  70. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    Article  PubMed  CAS  Google Scholar 

  71. Wang L, Xie J, Schultz PG (2006) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249

    Article  PubMed  Google Scholar 

  72. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  PubMed  CAS  Google Scholar 

  73. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Protein Res 40:180–193

    Article  PubMed  Google Scholar 

  75. Kelly SM, Price NC (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta 1338:161–185

    Article  PubMed  CAS  Google Scholar 

  76. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30:10428–10435

    Article  PubMed  CAS  Google Scholar 

  77. Kuhlman B, Raleigh DP (1998) Global analysis of the thermal and chemical denaturation of the N‐terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, ΔH° ΔS° and ΔC° p, and evaluation of solvent isotope effects. Protein Sci 7:2405–2412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Yi Q, Scalley ML, Simons KT, Gladwin ST, Baker D (1997) Characterization of the free energy spectrum of peptostreptococcal protein L. Fold Des 2:271–280

    Article  PubMed  CAS  Google Scholar 

  79. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in {beta}2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Li F, Shi P, Li J, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W, Tian C, Wang J (2013) A genetically encoded 19F NMR probe for tyrosine phosphorylation. Angew Chem Int Ed 52:3958–3962

    Article  CAS  Google Scholar 

  81. Pomerantz WC, Wang N, Lipinski AK, Wang R, Cierpicki T, Mapp AK (2012) Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem Biol 7:1345–1350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Anderson JT, Toogood PL, Marsh ENG (2002) A short and efficient synthesis of l-5, 5, 5, 5', 5', 5'-hexafluoroleucine from N-Cbz-l-serine. Org Lett 4:4281–4283

    Article  PubMed  CAS  Google Scholar 

  83. Chiu H-P, Cheng RP (2007) Chemoenzymatic synthesis of (S)-hexafluoroleucine and (S)-tetrafluoroleucine. Org Lett 9:5517–5520

    Article  PubMed  CAS  Google Scholar 

  84. Xing X, Fichera A, Kumar K (2001) A novel synthesis of enantiomerically pure 5, 5, 5, 5', 5', 5'-hexafluoroleucine. Org Lett 3:1285–1286

    Article  PubMed  CAS  Google Scholar 

  85. Tsushima T, Kawada K, Ishihara S, Uchida N, Shiratori O, Higaki J, Hirata M (1988) Fluorine containing amino acids and their derivatives. 7. Synthesis and antitumor activity of α-and γ-substituted methotrexate analogs. Tetrahedron 44:5375–5387

    Article  CAS  Google Scholar 

  86. Vine WH, Hsieh K-H, Marshall GR (1981) Synthesis of fluorine-containing peptides. Analogs of angiotensin II containing hexafluorovaline. J Med Chem 24:1043–1047

    Article  PubMed  CAS  Google Scholar 

  87. Sani M, Bruché L, Chiva G, Fustero S, Piera J, Volonterio A, Zanda M (2003) Highly stereoselective tandem aza-Michael addition–enolate protonation to form partially modified retropeptide mimetics incorporating a trifluoroalanine surrogate. Angew Chem Int Ed 42:2060–2063

    Article  CAS  Google Scholar 

  88. Xing X, Fichera A, Kumar K (2002) A simple and efficient method for the resolution of all four diastereomers of 4, 4, 4-trifluorovaline and 5, 5, 5-trifluoroleucine. J Org Chem 67:1722–1725

    Article  PubMed  CAS  Google Scholar 

  89. Erdbrink H, Peuser I, Gerling UI, Lentz D, Koksch B, Czekelius C (2012) Conjugate hydrotrifluoromethylation of α, β-unsaturated acyl-oxazolidinones: synthesis of chiral fluorinated amino acids. Org Biomol Chem 10:8583–8586

    Article  PubMed  CAS  Google Scholar 

  90. Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and.alpha.-methoxy-.alpha.-trifluoromethylphenylacetate (MTPA) esters. J Am Chem Soc 95:512–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of the following scientists who have worked on various aspects of the design of fluorinated proteins and peptides in our laboratory: James Anderson, Morris Slutsky, Kyung-Hoon Lee, Hwang-Yeol Lee, Lindsey Gottler, Roberto de la Salud-Bea, Yuta Suzuki, and Benjamin Levin. These projects have been funded, in part, by the following organizations: National Science Foundation (CHE 0640934), the Army Research Office (W911NF-11-1-0251), and the Defense Threat Reduction Agency (HDTRA1-11-1-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Neil G. Marsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Buer, B.C., Marsh, E.N.G. (2014). Design, Synthesis, and Study of Fluorinated Proteins. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics