Skip to main content

Posttranslational Incorporation of Noncanonical Amino Acids in the RNase S System by Semisynthetic Protein Assembly

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

The unique ribonuclease S (RNase S) system, derived from proteolytic cleavage of bovine ribonuclease A (RNase A), consists of a tight complex formed by a peptide (amino acids 1–20) and a protein (21–124) part. These fragments, designated as S-peptide and S-protein, can be separated by two purification steps. By addition of synthetic S-peptide derivatives to the S-protein, semisynthetic RNase S is reassembled with high efficiency. Based on this peptide–protein complementation noncanonical amino acids can be easily introduced into a protein host. Here we describe the preparation of the S-protein from RNase A as well as the characterization of the reassembled semisynthetic RNase S complex. Complex formation can be monitored by RNase activity, circular dichroism, or fluorescence polarization. Structure-based enzyme design of the RNase S scaffold is possible based on high-resolution crystal structures of RNase S and its semisynthetic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raines RT (1998) Ribonuclease A. Chem Rev 98:1045–1065

    Article  PubMed  CAS  Google Scholar 

  2. Marshall GR, Feng J, Kuster DJ (2008) Back to the future: ribonuclease A. Biopolymers 90: 259–277

    Article  PubMed  CAS  Google Scholar 

  3. Richards FM (1955) Titration of amino groups released during the digestion of ribonuclease by subtilisin. C R Trav Lab Carlsberg Chim 29:322–328

    PubMed  CAS  Google Scholar 

  4. Richards FM, Vithayathil PJ (1959) The preparation of subtilisin-modified ribonuclease and separation of the peptide and protein components. J Biol Chem 234:1459–1465

    PubMed  CAS  Google Scholar 

  5. Taylor HC, Komoriya A, Chaiken IM (1985) Crystallographic structure of an active, sequence-engineered ribonuclease. Proc Natl Acad Sci U S A 82:6423–6426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Genz M, Singer D, Hey-Hawkins E, Hoffmann R, Sträter N (2013) Crystal structure of Apo- and metalated thiolate containing RNase S as structural basis for the design of artificial metalloenzymes by peptide-protein complementation. Z Anorg Allg Chem 639: 2395–2400

    Article  CAS  Google Scholar 

  7. Barnard EA (1969) Ribonucleases. Ann Rev Biochem 38:677–732

    Article  PubMed  CAS  Google Scholar 

  8. Imperiali B, Roy RS (1994) Coenzyme: amino acid chimeras—new residues for the assembly of functional proteins. J Am Chem Soc 116: 12083–12084

    Article  CAS  Google Scholar 

  9. Hamachi I, Yamada Y, Matsugi T, Shinkai S (1999) Single- or dual-mode switching of semisynthetic ribonuclease S’ with an iminodiacetic acid moiety in response to the copper(II) concentration. Chem Eur J 5:1503–1511

    Article  CAS  Google Scholar 

  10. Hamachi I, Hiraoka T, Yamada Y, Shinkai S (1998) Photoswitching of the enzymatic activity of semisynthetic ribonuclease S’ bearing phenylazophenylalanine at a specific site. Chem Lett 6:537–538

    Article  Google Scholar 

  11. Dickman SR, Trupin K (1959) Ribonuclease assay based on uridine phosphate determination. Arch Biochem Biophys 82:355–361

    Article  PubMed  CAS  Google Scholar 

  12. Korn K, Greiner-Stoeffele T, Hahn U (2001) Ribonuclease assays utilizing toluidine blue indicator plates, methylene blue, or fluorescence correlation spectroscopy. Methods Enzymol 341:142–153

    Article  PubMed  CAS  Google Scholar 

  13. Lee CC, Trotman CNA, Tate WP (1983) A ribonuclease assay: separation of product from undegraded RNA substrate. Anal Biochem 135:64–68

    Article  PubMed  CAS  Google Scholar 

  14. Postek KM, LaDue T, Nelson C, Sandwick RK (1992) Spectrophotometric ribonuclease assays using dinucleoside monophosphate substrates. Anal Biochem 203:47–52

    Article  PubMed  CAS  Google Scholar 

  15. Greiner-Stoeffele T, Grunow M, Hahn U (1996) A general ribonuclease assay using methylene blue. Anal Biochem 240:24–28

    Article  PubMed  CAS  Google Scholar 

  16. Simons ER, Blout ER (1968) Circular dichroism of ribonuclease A, ribonuclease S, and some fragments. J Biol Chem 243:218–221

    PubMed  CAS  Google Scholar 

  17. Bastos M, Pease JH, Wemmer DE, Murphy KP, Connelly PR (2001) Thermodynamics of the helix-coil transition: binding of S15 and a hybrid sequence, disulfide stabilized peptide to the S-protein. Proteins 42:523–530

    Article  PubMed  CAS  Google Scholar 

  18. Moerke NJ (2009) Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid: protein binding. Curr Protoc Chem Biol 1:1–15

    PubMed  Google Scholar 

  19. Kim EE, Varadarajan R, Wyckoff HW, Richards FM (1992) Refinement of the crystal structure of ribonuclease S. Comparison with and between the various ribonuclease A structures. Biochemistry 31:12304–12314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the European Fund for Regional Structure Development (EFRE, European Unit). The authors like to thank the group of Prof. Dr. Ralf Hoffmann, especially Dr. David Singer for peptide synthesis as well as Dr. Daniel Knappe and Nicole Berthold, for introduction into fluorescence polarization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maika Genz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Genz, M., Sträter, N. (2014). Posttranslational Incorporation of Noncanonical Amino Acids in the RNase S System by Semisynthetic Protein Assembly. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics