Protein Design pp 1-14

Part of the Methods in Molecular Biology book series (MIMB, volume 1216) | Cite as

De Novo Design of Stable α-Helices

  • Alexander Yakimov
  • Georgy Rychkov
  • Michael Petukhov
Protocol

Abstract

Recent studies have elucidated key principles governing folding and stability of α-helices in short peptides and globular proteins. In this chapter we review briefly those principles and describe a protocol for the de novo design of highly stable α-helixes using the SEQOPT algorithm. This algorithm is based on AGADIR, the statistical mechanical theory for helix-coil transitions in monomeric peptides, and the tunneling algorithm for global sequence optimization.

Key words

α-Helix Stability Sequence optimization Solubility 

References

  1. 1.
    Estieu-Gionnet K, Guichard G (2011) Stabilized helical peptides: overview of the technologies and therapeutic promises. Expert Opin Drug Discov 6:937–963PubMedCrossRefGoogle Scholar
  2. 2.
    Finkelstein AV, Badretdinov AY, Ptitsyn OB (1991) Physical reasons for secondary structure stability: alpha-helices in short peptides. Proteins 10:287–299PubMedCrossRefGoogle Scholar
  3. 3.
    Scholtz JM, Baldwin RL (1992) The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct 21:95–118PubMedCrossRefGoogle Scholar
  4. 4.
    Errington N, Iqbalsyah T, Doig AJ (2006) Structure and stability of the alpha-helix: lessons for design. Methods Mol Biol 340:3–26PubMedGoogle Scholar
  5. 5.
    Petukhov M, Tatsu Y, Tamaki K, Murase S, Uekawa H, Yoshikawa S et al (2009) Design of stable alpha-helices using global sequence optimization. J Pept Sci 15:359–365PubMedCrossRefGoogle Scholar
  6. 6.
    Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of [alpha]-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5:161–173PubMedCrossRefGoogle Scholar
  7. 7.
    Armstrong KM, Fairman R, Baldwin RL (1993) The (i, i + 4) Phe-His interaction studied in an alanine-based alpha-helix. J Mol Biol 230:284–291PubMedCrossRefGoogle Scholar
  8. 8.
    Huyghues-Despointes BM, Scholtz JM, Baldwin RL (1993) Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings. Protein Sci 2:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Padmanabhan S, Baldwin RL (1994) Tests for helix-stabilizing interactions between various nonpolar side chains in alanine-based peptides. Protein Sci 3:1992–1997PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lockhart DJ, Kim PS (1992) Internal stark effect measurement of the electric field at the amino terminus of an alpha helix. Science 257:947–951PubMedCrossRefGoogle Scholar
  11. 11.
    Aurora R, Rose GD (1998) Helix capping. Protein Sci 7:21–38PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bryson JW, Betz SF, Lu HS, Suich DJ, Zhou HX, O’Neil KT et al (1995) Protein design: a hierarchic approach. Science 270:935–941PubMedCrossRefGoogle Scholar
  13. 13.
    Villegas V, Viguera AR, Avilés FX, Serrano L (1996) Stabilization of proteins by rational design of alpha-helix stability using helix/coil transition theory. Fold Des 1:29–34PubMedCrossRefGoogle Scholar
  14. 14.
    Liu Y, Kuhlman B (2006) RosettaDesign server for protein design. Nucleic Acids Res 34(Web Server):W235–W238PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pokala N, Handel TM (2004) Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation. Protein Sci 13:925–936PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liang S, Grishin NV (2003) Effective scoring function for protein sequence design. Proteins 54:271–281CrossRefGoogle Scholar
  17. 17.
    Dai L, Yang Y, Kim HR, Zhou Y (2010) Improving computational protein design by using structure-derived sequence profile. Proteins 78:2338–2348PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Li Z, Yang Y, Zhan J, Dai L, Zhou Y (2013) Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 42:315–335PubMedCrossRefGoogle Scholar
  19. 19.
    Levy A, Montalvo A (1985) The tunneling algorithm for the global minimization of functions. SIAM J Sci Comput 6:15–29CrossRefGoogle Scholar
  20. 20.
    Muñoz V, Serrano L (1994) Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol 1:399–409PubMedCrossRefGoogle Scholar
  21. 21.
    Muñoz V, Serrano L (1995) Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol 245:275–296PubMedCrossRefGoogle Scholar
  22. 22.
    Muñoz V, Serrano L (1995) Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J Mol Biol 245:297–308PubMedCrossRefGoogle Scholar
  23. 23.
    Petukhov M, Yumoto N, Murase S, Onmura R, Yoshikawa S (1996) Factors that affect the stabilization of alpha-helices in short peptides by a capping box. Biochemistry 35:387–397PubMedCrossRefGoogle Scholar
  24. 24.
    Lacroix E, Viguera AR, Serrano L (1998) Elucidating the folding problem of alpha-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. J Mol Biol 284:173–191PubMedCrossRefGoogle Scholar
  25. 25.
    Petukhov M, Muñoz V, Yumoto N, Yoshikawa S, Serrano L (1998) Position dependence of non-polar amino acid intrinsic helical propensities. J Mol Biol 278:279–289PubMedCrossRefGoogle Scholar
  26. 26.
    Petukhov M, Uegaki K, Yumoto N, Yoshikawa S, Serrano L (1999) Position dependence of amino acid intrinsic helical propensities II: non-charged polar residues: Ser, Thr, Asn, and Gln. Protein Sci 8:2144–2150PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Petukhov M, Uegaki K, Yumoto N, Serrano L (2002) Amino acid intrinsic alpha-helical propensities III: positional dependence at several positions of C terminus. Protein Sci 11:766–777PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Muñoz V, Serrano L (1997) Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41:495–509PubMedCrossRefGoogle Scholar
  29. 29.
    Finkelstein AV, Ptitsyn OB (1976) A theory of protein molecule self-organization. IV. Helical and irregular local structures of unfolded protein chains. J Mol Biol 103:15–24PubMedCrossRefGoogle Scholar
  30. 30.
    Finkelstein AV (1977) Theory of protein molecule self-organization. III. A calculating method for the probabilities of the secondary structure formation in an unfolded polypeptide chain. Biopolymers 16:525–529PubMedCrossRefGoogle Scholar
  31. 31.
    Finkelstein AV (1977) Electrostatic interactions of charged groups in water environment and their influence on the polypeptide chain secondary structure formation. Molek Biol (USSR) 10:811–819Google Scholar
  32. 32.
    Finkelstein AV, Ptitsyn OB (1977) Theory of protein molecule self-organization. I. Thermodynamic parameters of local secondary structures in the unfolded protein chain. Biopolymers 16:469–495PubMedCrossRefGoogle Scholar
  33. 33.
    Finkelstein AV, Ptitsyn OB, Kozitsyn SA (1977) Theory of protein molecule self-organization. II. A comparison of calculated thermodynamic parameters of local secondary structures with experiments. Biopolymers 16:497–524PubMedCrossRefGoogle Scholar
  34. 34.
    Bierzynski A, Kim PS, Baldwin RL (1982) A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A 79:2470–2474PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kim PS, Baldwin RL (1984) A helix stop signal in the isolated S-peptide of ribonuclease A. Nature 307:329–334PubMedCrossRefGoogle Scholar
  36. 36.
    Creamer TP, Rose GD (1994) Alpha-helix-forming propensities in peptides and proteins. Proteins 19:85–97PubMedCrossRefGoogle Scholar
  37. 37.
    Avbelj F, Moult J (1995) Role of electrostatic screening in determining protein main chain conformational preferences. Biochemistry 34:755–764PubMedCrossRefGoogle Scholar
  38. 38.
    Chang DK, Cheng SF, Trivedi VD, Lin KL (1999) Proline affects oligomerization of a coiled coil by inducing a kink in a long helix. J Struct Biol 128:270–279PubMedCrossRefGoogle Scholar
  39. 39.
    Viguera AR, Serrano L (1999) Stable proline box motif at the N-terminal end of alpha-helices. Protein Sci 8:1733–1742PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Strehlow KG, Baldwin RL (1989) Effect of the substitution Ala––Gly at each of five residue positions in the C-peptide helix. Biochemistry 28:2130–2133PubMedCrossRefGoogle Scholar
  41. 41.
    Stapley BJ, Rohl CA, Doig AJ (1995) Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions. Protein Sci 4:2383–2391PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Seale JW, Srinivasan R, Rose GD (1994) Sequence determinants of the capping box, a stabilizing motif at the N-termini of α-helices. Protein Sci 3:1741–1745PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Muñoz V, Blanco FJ, Serrano L (1995) The hydrophobic-staple motif and a role for loop-residues in alpha-helix stability and protein folding. Nat Struct Biol 2:380–385PubMedCrossRefGoogle Scholar
  44. 44.
    Aurora R, Srinivasan R, Rose GD (1994) Rules for alpha-helix termination by glycine. Science 264:1126–1130PubMedCrossRefGoogle Scholar
  45. 45.
    Viguera AR, Serrano L (1995) Experimental analysis of the Schellman motif. J Mol Biol 251:150–160PubMedCrossRefGoogle Scholar
  46. 46.
    Zimm BH, Doty P, Iso K (1959) Determination of the parameters for helix formation in poly-gamma-benzyl-l-glutamate. Proc Natl Acad Sci U S A 45:1601–1607PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lifson S, Roig A (1961) On the theory of helix—coil transition in polypeptides. J Chem Phys 34:1963–1973CrossRefGoogle Scholar
  48. 48.
    Harper ET, Rose GD (1993) Helix stop signals in proteins and peptides: the capping box. Biochemistry 32(30):7605–7609PubMedCrossRefGoogle Scholar
  49. 49.
    Himmelblau DM (1972) Applied nonlinear programming. McGraw-Hill, New YorkGoogle Scholar
  50. 50.
    Bartenev OV (2000) FORTRAN for professionals 1. Dialog-MIPI, MoscowGoogle Scholar
  51. 51.
    Yakimov A, Rychkov G, Petukhov M (2013) SeqOPT: web based server for rational design of conformationally stable alpha-helices in monomeric peptides and globular proteins. FEBS J 280(Suppl s1):127–128Google Scholar
  52. 52.
    Rose GD, Wolfenden R (1993) Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct 22:381–415PubMedCrossRefGoogle Scholar
  53. 53.
    Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A 81:140–144PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedCrossRefGoogle Scholar
  55. 55.
    Biswas KM, DeVido DR, Dorsey JG (2003) Evaluation of methods for measuring amino acid hydrophobicities and interactions. J Chromatogr A 1000:637–655PubMedCrossRefGoogle Scholar
  56. 56.
    Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353PubMedCrossRefGoogle Scholar
  57. 57.
    Surzhik MA, Churkina SV, Shmidt AE, Shvetsov AV, Kozhina TN, Firsov DL, Firsov LM, Petukhov MG (2010) The effect of point amino acid substitutions in an internal alpha-helix on thermostability of Aspergillus awamori X100 glucoamylase. Prikl Biokhim Mikrobiol 46:221–227PubMedGoogle Scholar
  58. 58.
    Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637PubMedCrossRefGoogle Scholar
  59. 59.
    Abagyan R, Totrov M, Kuznetsov D (1994) ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506CrossRefGoogle Scholar
  60. 60.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  62. 62.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Best RB, de Sancho D, Mittal J (2012) Residue-specific α-helix propensities from molecular simulation. Biophys J 102:1462–1467PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Galzitskaya OV, Higo J, Finkelstein AV (2002) alpha-Helix and beta-hairpin folding from experiment, analytical theory and molecular dynamics simulations. Curr Protein Pept Sci 3:191–200PubMedCrossRefGoogle Scholar
  65. 65.
    Dodero VI, Quirolo ZB, Sequeira MA (2011) Biomolecular studies by circular dichroism. Front Biosci 16:61–73CrossRefGoogle Scholar
  66. 66.
    Kuwajima K (1995) Circular dichroism. Methods Mol Biol 40:115–136PubMedGoogle Scholar
  67. 67.
    Chen Y-H, Yang JT (1971) A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism. Biochem Biophys Res Commun 44:1285–1291PubMedCrossRefGoogle Scholar
  68. 68.
    Luo P, Baldwin RL (1997) Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 36:8413–8421PubMedCrossRefGoogle Scholar
  69. 69.
    Hinds MG, Norton RS (1995) NMR spectroscopy of peptides and proteins. Methods Mol Biol 36:131–154Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander Yakimov
    • 1
    • 2
  • Georgy Rychkov
    • 1
    • 2
  • Michael Petukhov
    • 1
    • 2
  1. 1.Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics InstituteNRC Kurchatov InstituteGatchinaRussia
  2. 2.Saint Petersburg State Polytechnical UniversitySaint PetersburgRussia

Personalised recommendations