Molecular Docking to Flexible Targets

  • Jesper Sørensen
  • Özlem Demir
  • Robert V. Swift
  • Victoria A. Feher
  • Rommie E. Amaro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1215)

Abstract

It is widely accepted that protein receptors exist as an ensemble of conformations in solution. How best to incorporate receptor flexibility into virtual screening protocols used for drug discovery remains a significant challenge. Here, stepwise methodologies are described to generate and select relevant protein conformations for virtual screening in the context of the relaxed complex scheme (RCS), to design small molecule libraries for docking, and to perform statistical analyses on the virtual screening results. Methods include equidistant spacing, RMSD-based clustering, and QR factorization protocols for ensemble generation and ROC analysis for ensemble selection.

Key words

Relaxed complex scheme Ligand filtering Protein flexibility QR factorization RMSD-based clustering ROC analysis 

References

  1. 1.
    Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603PubMedCrossRefGoogle Scholar
  2. 2.
    Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. doi:10.1038/nchembio.232 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Forman-Kay JD (1999) The “dynamics” in the thermodynamics of binding. Nat Struct Biol 6(12):1086–1087. doi:10.1038/70008 PubMedCrossRefGoogle Scholar
  4. 4.
    Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49(6):1455–1474. doi:10.1021/ci900056c PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng T, Li X, Li Y, Liu Z, Wang R (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49(4):1079–1093. doi:10.1021/ci9000053 PubMedCrossRefGoogle Scholar
  6. 6.
    Armen RS, Chen J, Brooks CL 3rd (2009) An evaluation of explicit receptor flexibility in molecular docking using molecular dynamics and torsion angle molecular dynamics. J Chem Theory Comput 5(10):2909–2923. doi:10.1021/ct900262t PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model 47(6):2293–2302. doi:10.1021/ci700253h PubMedCrossRefGoogle Scholar
  8. 8.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW (2002) Complexity and simplicity of ligand-macromolecule interactions: the energy landscape perspective. Curr Opin Struct Biol 12(2):197–203PubMedCrossRefGoogle Scholar
  9. 9.
    Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633. doi:10.1021/ja0260162 PubMedCrossRefGoogle Scholar
  10. 10.
    Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2(7):527–541. doi:10.1038/nrd1129 PubMedCrossRefGoogle Scholar
  11. 11.
    Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51(20):6237–6255. doi:10.1021/jm800562d PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon JA (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47(8):1879–1881. doi:10.1021/jm0341913 PubMedCrossRefGoogle Scholar
  13. 13.
    Gorfe AA, Caflisch A (2005) Functional plasticity in the substrate binding site of beta-secretase. Structure 13(10):1487–1498. doi:10.1016/j.str.2005.06.015 PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51(13):3878–3894. doi:10.1021/jm8001197 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Baron R, McCammon JA (2007) Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: the W191G mutant of cytochrome c peroxidase in water as revealed by molecular dynamics simulations. Biochemistry 46(37):10629–10642. doi:10.1021/bi700866x PubMedCrossRefGoogle Scholar
  16. 16.
    Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24(2):149–164. doi:10.1002/jmr.1077 PubMedCrossRefGoogle Scholar
  17. 17.
    Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860PubMedCrossRefGoogle Scholar
  18. 18.
    B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14(7–8):394–400. doi:10.1016/j.drudis.2009.01.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81(1):41–49. doi:10.1111/cbdd.12051 PubMedCrossRefGoogle Scholar
  20. 20.
    Jiang F, Kim SH (1991) “Soft docking”: matching of molecular surface cubes. J Mol Biol 219(1):79–102PubMedCrossRefGoogle Scholar
  21. 21.
    Cerqueira NM, Bras NF, Fernandes PA, Ramos MJ (2009) MADAMM: a multistaged docking with an automated molecular modeling protocol. Proteins 74(1):192–206. doi:10.1002/prot.22146 PubMedCrossRefGoogle Scholar
  22. 22.
    Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. doi:10.1021/jm050540c PubMedCrossRefGoogle Scholar
  23. 23.
    Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67(1):83–84. doi:10.1111/j.1747-0285.2005.00327.x PubMedCrossRefGoogle Scholar
  24. 24.
    Jain AN (2009) Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J Comput Aided Mol Des 23(6):355–374. doi:10.1007/s10822-009-9266-3 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392. doi:10.1016/j.jmb.2008.11.010 PubMedCrossRefGoogle Scholar
  26. 26.
    Lemmon G, Meiler J (2012) Rosetta ligand docking with flexible XML protocols. Methods Mol Biol 819:143–155. doi:10.1007/978-1-61779-465-0_10 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Abagyan R, Totrov M, Kuznetsov D (1994) ICM – a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506. doi:10.1002/jcc.540150503 CrossRefGoogle Scholar
  28. 28.
    Corbeil CR, Moitessier N (2009) Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs. J Chem Inf Model 49(4):997–1009. doi:10.1021/ci8004176 PubMedCrossRefGoogle Scholar
  29. 29.
    Cavasotto CN, Kovacs JA, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127(26):9632–9640. doi:10.1021/ja042260c PubMedCrossRefGoogle Scholar
  30. 30.
    Cavasotto CN (2012) Normal mode-based approaches in receptor ensemble docking. Methods Mol Biol 819:157–168. doi:10.1007/978-1-61779-465-0_11 PubMedCrossRefGoogle Scholar
  31. 31.
    Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51(6):1439–1446. doi:10.1021/ci200117n PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22(9):693–705. doi:10.1007/s10822-007-9159-2 PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lin J-H, Perryman AL, Schames JR, McCammon JA (2003) The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers 68(1):47–62. doi:10.1002/bip.10218 PubMedCrossRefGoogle Scholar
  34. 34.
    Schnaufer A, Ernst NL, Palazzo SS, O'Rear J, Salavati R, Stuart K (2003) Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 12(2):307–319PubMedCrossRefGoogle Scholar
  35. 35.
    Landon MR, Amaro RE, Baron R, Ngan CH, Ozonoff D, Andrew McCammon J, Vajda S (2008) Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des 71(2):106–116. doi:10.1111/j.1747-0285.2007.00614.x PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Babakhani A, Talley TT, Taylor P, McCammon JA (2009) A virtual screening study of the acetylcholine binding protein using a relaxed-complex approach. Comput Biol Chem 33(2):160–170. doi:10.1016/j.compbiolchem.2008.12.002 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Durrant JD, de Oliveira CAF, McCammon JA (2010) Including receptor flexibility and induced fit effects into the design of MMP-2 inhibitors. J Mol Recognit 23(2):173–182. doi:10.1002/jmr.989 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Demir Ö, Baronio R, Salehi F, Wassman CD, Hall L, Hatfield GW, Chamberlin R, Kaiser P, Lathrop RH, Amaro RE (2011) Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants. PLoS Comput Biol 7(10):e1002238. doi:10.1371/journal.pcbi.1002238 PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Amaro RE, Schnaufer A, Interthal H, Hol W, Stuart KD, McCammon JA (2008) Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc Natl Acad Sci U S A 105(45):17278–17283. doi:10.1073/pnas.0805820105 PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Durrant JD, Hall L, Swift RV, Landon M, Schnaufer A, Amaro RE (2010) Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1. PLoS Negl Trop Dis 4(8):e803. doi:10.1371/journal.pntd.0000803 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781–1802PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wang Y, Harrison CB, Schulten K, McCammon JA (2011) Implementation of accelerated molecular dynamics in NAMD. Comput Sci Discov 4(1):015002PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725. doi:10.1002/prot.21123 PubMedCrossRefGoogle Scholar
  44. 44.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7): 1750–1759. doi:10.1021/jm030644s PubMedCrossRefGoogle Scholar
  45. 45.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. doi:10.1021/jm0306430 PubMedCrossRefGoogle Scholar
  46. 46.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38PubMedCrossRefGoogle Scholar
  48. 48.
    Deng J, Schnaufer A, Salavati R, Stuart KD, Hol WG (2004) High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. J Mol Biol 343(3):601–613. doi:10.1016/j.jmb.2004.08.041 PubMedCrossRefGoogle Scholar
  49. 49.
    Drug Discovery Unit UoD DDU Library Collections (2013) http://www.drugdiscovery.dundee.ac.uk/libraries.html
  50. 50.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. doi:10.1021/jm300687e PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Moshiri H, Acoca S, Kala S, Najafabadi HS, Hogues H, Purisima E, Salavati R (2011) Naphthalene-based RNA editing inhibitor blocks RNA editing activities and editosome assembly in Trypanosoma brucei. J Biol Chem 286(16):14178–14189. doi:10.1074/jbc.M110.199646 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Salavati R, Moshiri H, Kala S, Shateri Najafabadi H (2012) Inhibitors of RNA editing as potential chemotherapeutics against trypanosomatid pathogens. Int J Parasitol Drugs Drug Resist 2:36–46. doi:10.1016/j.ijpddr.2011.10.003 PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sørensen J, Palmer DS, Qvist KB, Schiøtt B (2011) Initial stage of cheese production: a molecular modeling study of bovine and camel chymosin complexed with peptides from the chymosin-sensitive region of kappa-casein. J Agric Food Chem 59(10):5636–5647. doi:10.1021/jf104898w PubMedCrossRefGoogle Scholar
  54. 54.
    Feher VA, Lawson JD (2009) Approaches to kinase homology modeling: successes and considerations for the structural kinome. In: Rongshi L, Stafford JA (eds) Kinase inhibitor drugs. Wiley, Hoboken, NJ, pp 433–460. doi: 10.1002/9780470524961.ch17
  55. 55.
    Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. doi:10.1146/annurev.biophys.29.1.291 PubMedCrossRefGoogle Scholar
  56. 56.
    Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14(13–14):676–683. doi:10.1016/j.drudis.2009.04.006 PubMedCrossRefGoogle Scholar
  57. 57.
    Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. J Chem Inf Model. doi:10.1021/ci400025f Google Scholar
  58. 58.
    Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24): 11919–11929. doi:10.1063/1.1755656 PubMedCrossRefGoogle Scholar
  59. 59.
    Pierce LCT, Salomon-Ferrer R, Augusto F, de Oliveira C, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8(9):2997–3002. doi:10.1021/ct300284c PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Swift RV, Durrant J, Amaro RE, McCammon JA (2009) Toward understanding the conformational dynamics of RNA ligation. Biochemistry 48(4):709–719. doi:10.1021/bi8018114 PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Allnér O, Nilsson L, Villa A (2012) Magnesium ion–water coordination and exchange in biomolecular simulations. J Chem Theory Comput 8(4):1493–1502. doi:10.1021/ct3000734 CrossRefGoogle Scholar
  62. 62.
    Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120(20):9665–9678. doi:10.1063/1.1683075 PubMedCrossRefGoogle Scholar
  63. 63.
    Demir O, Amaro RE (2013) Designing novel inhibitors of Trypanosoma brucei. In: Kortagere S (ed) Methods in molecular biology: in silico models for drug discovery, vol 993. Humana Press, Totowa, NJ, pp 231–243, doi: 10.1007/978-1-62703-342-8_15Google Scholar
  64. 64.
    Amaro RE, Swift RV, McCammon JA (2007) Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei. PLoS Negl Trop Dis 1(2):e68. doi:10.1371/journal.pntd.0000068 PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shang Y, Simmerling C (2012) Molecular dynamics applied in drug discovery: the case of HIV-1 protease. Methods Mol Biol 819:527–549. doi:10.1007/978-1-61779-465-0_31 PubMedCrossRefGoogle Scholar
  66. 66.
    Nichols S, Baron R, McCammon JA (2012) On the use of molecular dynamics receptor conformations for virtual screening. In: Baron R (ed) Computational drug discovery and design, vol 819, Methods in molecular biology. Springer, New York, pp 93–103CrossRefGoogle Scholar
  67. 67.
    O’Donoghue P, Luthey-Schulten Z (2003) On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev 67(4):550–573. doi:10.1128/MMBR.67.4.550-573.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Baron R, McCammon JA (2008) (Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein–ligand binding. Chem Phys Chem 9(7):983–988. doi:10.1002/cphc.200700857 PubMedGoogle Scholar
  69. 69.
    Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6):2312–2334. doi:10.1021/ct700119m CrossRefGoogle Scholar
  70. 70.
    Osguthorpe DJ, Sherman W, Hagler AT (2012) Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 80(2):182–193. doi:10.1111/j.1747-0285.2012.01396.x PubMedCrossRefGoogle Scholar
  71. 71.
    Osguthorpe DJ, Sherman W, Hagler AT (2012) Exploring protein flexibility: incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J Phys Chem B 116(23):6952–6959. doi:10.1021/jp3003992 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53(15):5858–5867. doi:10.1021/jm100574m PubMedCrossRefGoogle Scholar
  73. 73.
    Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168. doi:10.1186/1471-2105-10-168 PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Durrant JD, de Oliveira CAF, McCammon JA (2011) POVME: an algorithm for measuring binding-pocket volumes. J Mol Graph Model 29(5):773–776. doi:10.1016/j.jmgm.2010.10.007 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. doi:10.1021/ct400341p CrossRefGoogle Scholar
  76. 76.
    Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3(2):198–210. doi:10.1002/wcms.1121 CrossRefGoogle Scholar
  77. 77.
    Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER. 12 edn. University of California, San Francisco, CA, USAGoogle Scholar
  78. 78.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kozakov D, Hall DR, Chuang G-Y, Cencic R, Brenke R, Grove LE, Beglov D, Pelletier J, Whitty A, Vajda S (2011) Structural conservation of druggable hot spots in protein–protein interfaces. Proc Natl Acad Sci 108(33):13528–13533. doi:10.1073/pnas.1101835108 PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Brenke R, Kozakov D, Chuang G-Y, Beglov D, Hall D, Landon MR, Mattos C, Vajda S (2009) Fragment-based identification of druggable “hot spots” of proteins using Fourier domain correlation techniques. Bioinformatics 25(5):621–627. doi:10.1093/bioinformatics/btp036 PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chem Med Chem 3(3):435–444. doi:10.1002/cmdc.200700139 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rishton GM (2003) Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 8(2):86–96PubMedCrossRefGoogle Scholar
  83. 83.
    Seidler J, McGovern SL, Doman TN, Shoichet BK (2003) Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46(21):4477–4486. doi:10.1021/jm030191r PubMedCrossRefGoogle Scholar
  84. 84.
    McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45(8):1712–1722PubMedCrossRefGoogle Scholar
  85. 85.
    Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. doi:10.1021/jm901137j PubMedCrossRefGoogle Scholar
  86. 86.
    Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – an overview. Drug Discov Today 3(4):160–178CrossRefGoogle Scholar
  87. 87.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. doi:10.1021/ci3001277 PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931. doi:10.1021/jm050362n PubMedCrossRefGoogle Scholar
  89. 89.
    Nicholls A (2011) What do we know?: simple statistical techniques that help. In: Bajorath J (ed) Chemoinformatics and computational chemical biology, vol 672, Methods in molecular biology. Humana Press, Totowa, NJ, pp 531–581. doi:10.1007/978-1-60761-839-3_22 CrossRefGoogle Scholar
  90. 90.
    Jain AN (2008) Bias, reporting, and sharing: computational evaluations of docking methods. J Comput Aided Mol Des 22(3–4):201–212. doi:10.1007/s10822-007-9151-x PubMedCrossRefGoogle Scholar
  91. 91.
    Nichols SE, Swift RV, Amaro RE (2012) Rational prediction with molecular dynamics for hit identification. Curr Top Med Chem 12(18):2002–2012. doi:10.2174/156802612804910313 PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    du Prel JB, Hommel G, Rohrig B, Blettner M (2009) Confidence interval or p-value?: part 4 of a series on evaluation of scientific publications. Dtsch Arztebl Int 106(19):335–339. doi: D – NLM: PMC2689604 OTO – NOTNLMGoogle Scholar
  93. 93.
    Craig IR, Essex JW, Spiegel K (2010) Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J Chem Inf Model 50(4):511–524. doi:10.1021/ci900407c PubMedCrossRefGoogle Scholar
  94. 94.
    Bucher D, Grant BJ, Markwick PR, McCammon JA (2011) Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics. PLoS Comput Biol 7(4):e1002034. doi:10.1371/journal.pcbi.1002034 PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Votapka L, Amaro RE (2013) Multistructural hot spot characterization with FTProd. Bioinformatics 29(3):393–394. doi:10.1093/bioinformatics/bts689 PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Abel R, Young T, Farid R, Berne BJ, Friesner RA (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130(9):2817–2831. doi:10.1021/ja0771033 PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Beuming T, Farid R, Sherman W (2009) High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci 18(8):1609–1619. doi:10.1002/pro.177 PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321. doi:10.1021/jm051197e PubMedCrossRefGoogle Scholar
  99. 99.
    Lie MA, Thomsen R, Pedersen CNS, Schiøtt B, Christensen MH (2011) Molecular docking with ligand attached water molecules. J Chem Inf Model 51(4):909–917. doi:10.1021/ci100510m PubMedCrossRefGoogle Scholar
  100. 100.
    Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47(2):488–508. doi:10.1021/ci600426e PubMedCrossRefGoogle Scholar
  101. 101.
    Sheridan RP, Singh SB, Fluder EM, Kearsley SK (2001) Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci 41(5):1395–1406. doi:10.1021/ci0100144 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jesper Sørensen
    • 1
  • Özlem Demir
    • 1
  • Robert V. Swift
    • 1
  • Victoria A. Feher
    • 1
  • Rommie E. Amaro
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations