Skip to main content

Identifying Putative Drug Targets and Potential Drug Leads: Starting Points for Virtual Screening and Docking

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

The availability of 3D models of both drug leads (small molecule ligands) and drug targets (proteins) is essential to molecular docking and computational drug discovery. This chapter describes a simple approach that can be used to identify both drug leads and drug targets using two popular Web-accessible databases: (1) DrugBank and (2) The Human Metabolome Database. First, it is illustrated how putative drug targets and drug leads for exogenous diseases (i.e., infectious diseases) can be readily identified and their 3D structures selected using only the genomic sequences from pathogenic bacteria or viruses as input. The second part illustrates how putative drug targets and drug leads for endogenous diseases (i.e., noninfectious diseases or chronic conditions) can be identified using similar databases and similar sequence input. This chapter is intended to illustrate how bioinformatics and cheminformatics can work synergistically to help provide the necessary inputs for computer-aided drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geldenhuys WJ, Gaasch KE, Watson M, Allen DD, Van der Schyf CJ (2006) Optimizing the use of open-source software applications in drug discovery. Drug Discov Today 11:127–132

    Article  PubMed  CAS  Google Scholar 

  2. Kirkpatrick DL, Watson S, Ulhaq S (1999) Structure-based drug design: combinatorial chemistry and molecular modeling. Comb Chem High Throughput Screen 2:211–221

    PubMed  CAS  Google Scholar 

  3. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Ann Rev Biophys Biomol Struct 27:249–284

    Article  CAS  Google Scholar 

  4. Mohan V, Gibbs AC, Cummings MD, Jaeger EP, DesJarlais RL (2005) Docking: successes and challenges. Curr Pharm Des 11:323–333

    Article  PubMed  CAS  Google Scholar 

  5. Jain AN (2004) Virtual screening in lead discovery and optimization. Curr Opin Drug Discov Devel 7:396–403

    PubMed  CAS  Google Scholar 

  6. Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ (2013) Protein-ligand docking in the new millennium – a retrospective of 10 years in the field. Curr Med Chem 20:2296–2314

    Article  PubMed  CAS  Google Scholar 

  7. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166

    Article  PubMed  CAS  Google Scholar 

  8. Shoichet BK, Kuntz ID (1993) Matching chemistry and shape in molecular docking. Protein Eng 6:723–732

    Article  PubMed  CAS  Google Scholar 

  9. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  PubMed  CAS  Google Scholar 

  10. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  PubMed  CAS  Google Scholar 

  11. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  PubMed  CAS  Google Scholar 

  12. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res 39(Database issue):D1035–D1041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0 – the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sweetman S (2004) Martindale: the complete drug reference, 34th edn. Pharmaceutical Press, New York, NY

    Google Scholar 

  16. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  17. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zhang R, Lin Y (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37(Database issue):D455–D458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Langille MG, Brinkman FS (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25:664–665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):D901–D906

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Ihlenfeldt WD, Voigt JH, Bienfait B, Oellien F, Nicklaus MC (2002) Enhanced CACTVS browser of the Open NCI Database. J Chem Inf Comput Sci 42:46–57

    Article  PubMed  CAS  Google Scholar 

  23. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33(Database issue):D514–D517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Wagner MJ (2013) Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits. Pharmacogenomics 14:413–424

    Article  PubMed  CAS  Google Scholar 

  25. Yang JO, Oh S, Ko G, Park SJ, Kim WY, Lee B, Lee S (2011) VnD: a structure-centric database of disease-related SNPs and drugs. Nucleic Acids Res 39(Database issue):D939–D944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Stelzer G, Dalah I, Stein TI, Satanower Y, Rosen N, Nativ N, Oz-Levi D, Olender T, Belinky F, Bahir I, Krug H, Perco P, Mayer B, Kolker E, Safran M, Lancet D (2011) In-silico human genomics with GeneCards. Hum Genomics 5:709–717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hu Y, Hines LM, Weng H, Zuo D, Rivera M, Richardson A, LaBaer J (2003) Analysis of genomic and proteomic data using advanced literature mining. J Proteome Res 2:405–412

    Article  PubMed  Google Scholar 

  28. Cheng D, Knox C, Young N, Stothard P, Damaraju S, Wishart DS (2008) PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res 36(Web Server issue):W399–W405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC et al (2013) DGIdb: mining the druggable genome. Nat Methods doi: 10.1038/nmeth.2689. [Epub ahead of print]

  30. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  31. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Ullman JR (1976) An algorithm for sub-graph isomorphism. J ACM 23:31–42

    Article  Google Scholar 

  33. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  PubMed  CAS  Google Scholar 

  34. Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS (2008) PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res 36(Web Server issue):W202–W209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41(Database issue):D991–D995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wishart Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wishart, D.S. (2015). Identifying Putative Drug Targets and Potential Drug Leads: Starting Points for Virtual Screening and Docking. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics