Information-Driven Structural Modelling of Protein–Protein Interactions

Part of the Methods in Molecular Biology book series (MIMB, volume 1215)


Protein–protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called “information-driven” approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a “classical” protein–protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes.

Key words

Biomolecular interactions Information-driven docking Conformational changes Multi-body docking HADDOCK Molecular modelling 


  1. 1.
    Melquiond AS, Karaca E, Kastritis PL et al (2012) Next challenges in protein–protein docking: from proteome to interactome and beyond. Comput Mol Sci 2:642–651CrossRefGoogle Scholar
  2. 2.
    Kastritis PL, Bonvin AM (2013) Molecular origins of binding affinity: seeking the Archimedean point. Curr Opin Struct Biol 23(6):868–877PubMedCrossRefGoogle Scholar
  3. 3.
    Schlick T, Collepardo-Guevara R, Halvorsen LA et al (2011) Biomolecular modeling and simulation: a field coming of age. Quart Rev Biophys 44:191–228CrossRefGoogle Scholar
  4. 4.
    Janin J (2013) The targets of CAPRI rounds 20–27. Proteins 81(12):2075–2081PubMedCrossRefGoogle Scholar
  5. 5.
    Lensink MF, Janin J (2013) Docking, scoring and affinity prediction in CAPRI. Proteins 81(12):2082–2095PubMedCrossRefGoogle Scholar
  6. 6.
    de Vries SJ, Melquiond ASJ, Kastritis PL et al (2010) Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. Proteins 78:3242–3249PubMedCrossRefGoogle Scholar
  7. 7.
    Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737PubMedCrossRefGoogle Scholar
  8. 8.
    Linge JP, Habeck M, Rieping W et al (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316PubMedCrossRefGoogle Scholar
  9. 9.
    Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921PubMedCrossRefGoogle Scholar
  10. 10.
    Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protocol 2:2728–2733CrossRefGoogle Scholar
  11. 11.
    de Vries SJ, Bonvin AMJJ (2008) How proteins get in touch: interface prediction in the study of biomolecular complexes. Curr Protein Pept Sci 9:394–406PubMedCrossRefGoogle Scholar
  12. 12.
    Karaca E, Bonvin AMJJ (2013) Advances in integrative modeling of biomolecular complexes. Methods 59:372–381PubMedCrossRefGoogle Scholar
  13. 13.
    Schmitz C, Melquiond AS, de Vries SJ et al (2012) Protein–protein docking with HADDOCK, NMR of biomolecules: towards mechanistic systems biology, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 521–535Google Scholar
  14. 14.
    Wang G, Louis JM, Sondej M et al (2000) Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J 19:5635–5649PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bertini I, Calderone V, Cerofolini L et al (2012) The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett 586:557–567PubMedCrossRefGoogle Scholar
  16. 16.
    Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540PubMedCrossRefGoogle Scholar
  18. 18.
    Tjandra N (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114PubMedCrossRefGoogle Scholar
  19. 19.
    van Dijk ADJ, Fushman D, Bonvin AMJJ (2005) Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins 60:367–381PubMedCrossRefGoogle Scholar
  20. 20.
    Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci U S A 109:2884–2889PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Choi UB, Strop P, Vrljic M et al (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nature 17:318–324Google Scholar
  22. 22.
    Brunger AT, Strop P, Vrljic M et al (2011) Three-dimensional molecular modeling with single molecule FRET. J Struct Biol 173:497–505PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Karaca E, Bonvin AMJJ (2013) On the usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Cryst D69:683–694, 1–12Google Scholar
  24. 24.
    de Vries SJ, Bonvin AMJJ (2011) CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PloS One 6:e17695PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Weigt M, White RA, Szurmant H et al (2009) Identification of direct residue contacts in protein–protein interaction by message passing. Proc Natl Acad Sci U S A 106:67–72PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080PubMedCrossRefGoogle Scholar
  27. 27.
    Fernández-Recio J, Totrov M, Abagyan R (2004) Identification of protein–protein interaction sites from docking energy landscapes. J Mol Biol 335:843–865PubMedCrossRefGoogle Scholar
  28. 28.
    Rodrigues JPGLM, Trellet M, Schmitz C et al (2012) Clustering biomolecular complexes by residue contacts similarity. Proteins 80:1810–1817PubMedGoogle Scholar
  29. 29.
    Daura X, Gademann K, Jaun B et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240CrossRefGoogle Scholar
  30. 30.
    Nilges M, O’Donoghue SI (1998) Ambiguous NOEs and automated NOE assignment. Progr Nucl Magn Reson Spectros 32:107–139CrossRefGoogle Scholar
  31. 31.
    Karaca E, Melquiond ASJ, de Vries SJ et al (2010) Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Mol Cell Proteomics 9:1784–1794PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Nilges M (1993) A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17:297–309PubMedCrossRefGoogle Scholar
  33. 33.
    Schmitz C, Bonvin AMJJ (2011) Protein–protein HADDocking using exclusively pseudocontact shifts. J Biomol NMR 50:263–266PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400PubMedCrossRefGoogle Scholar
  35. 35.
    Karaca E, Bonvin AMJJ (2011) A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 19:555–565PubMedCrossRefGoogle Scholar
  36. 36.
    van Dijk ADJ, Bonvin AMJJ (2006) Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22:2340–2347PubMedCrossRefGoogle Scholar
  37. 37.
    Kastritis PL, van Dijk ADJ, Bonvin AMJJ (2012) Explicit treatment of water molecules in data-driven protein–protein docking: the solvated HADDOCKing approach. Methods Mol Biol 819:355–374PubMedCrossRefGoogle Scholar
  38. 38.
    Kastritis PL, Visscher KM, van Dijk ADJ et al (2013) Solvated protein–protein docking using Kyte-Doolittle-based water preferences. Proteins 81:510–518PubMedCrossRefGoogle Scholar
  39. 39.
    van Dijk M, Visscher KM, Kastritis PL et al (2013) Solvated protein-DNA docking using HADDOCK. J Biomol NMR 56:51–63PubMedCrossRefGoogle Scholar
  40. 40.
    Krzeminski M, Loth K, Boelens R et al (2010) SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. BMC Bioinformatics 11:51PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363PubMedCrossRefGoogle Scholar
  42. 42.
    Sousa da Silva AW, Vranken WF (2012) ACPYPE – AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Malde AK, Zuo L, Breeze M et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theor Comput 7:4026–4037CrossRefGoogle Scholar
  44. 44.
    Lemkul JA, Allen WJ, Bevan DR (2010) Practical considerations for building GROMOS-compatible small-molecule topologies. J Chem Inf Model 50:2221–2235PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science – ChemistryUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations