Abstract
NMR is a well-established method to characterize the structure and dynamics of biomolecules in solution. High-quality structures can now be produced thanks to both experimental advances and computational developments that incorporate new NMR parameters and improved protocols and force fields in the structure calculation and refinement process. In this chapter, we give a short overview of the various types of NMR data that can provide structural information, and then focus on the structure calculation methodology itself. We discuss and illustrate with tutorial examples “classical” structure calculation, refinement, and structure validation approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wuthrich K (1986) Nmr of proteins and nucleic acids. Wiley, New York, NY
Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis. Wiley, New York, NY
Altona C (1996) Vicinal coupling constants and conformation of biomolecules. In Harris DMG, a K R (eds) Encyclopedia of nuclear magnetic resonance. Wiley, London. pp 4909–4922
Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339:127–174
Bertini I, Luchinat C, Parigi G (2012) Towards mechanistic systems biology. Wiley-VCH Verlag GmbH, Weinheim, Germany. pp 154–171
Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A 104:9615–9620
Shen Y et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105:4685–4690
Wishart DS et al (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502
Güntert P (1998) Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31:145–237
Linge JP, Williams MA, Spronk CAEM, Bonvin AMJJ, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50:496–506
Nederveen AJ et al (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59:662–672
Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378
Brünger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921
Brunger AT (2007) Version 1.2 of the Crystallography and NMR system. Nat Protoc 2:2728–2733
Doreleijers JF et al (2012) CING: an integrated residue-based structure validation program suite. J Biomol NMR 54:267–283
Luginbühl P, Szyperski T, Wüthrich K (1995) Statistical basis for the use of 13cα chemical shifts in protein structure determination. J Magn Res 109:92
Kuszewski J, Qin J, Gronenborn AM, Clore GM (1995) The impact of direct refinement against 13C alpha and 13C beta chemical shifts on protein structure determination by NMR. J Magn Reson B 106:92–96
Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26:215–240
Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57
Xu XP, Case DA (2001) Automated prediction of 15N, 13Calpha, 13Cbeta and 13C’ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333
Williamson MP, Kikuchi J, Asakura T (1995) Application of 1H NMR chemical shifts to measure the quality of protein structures. J Mol Biol 247:541–546
Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26:25–37
Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22
Karplus M (1963) Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc 85:2870–2871
Kim Y, Prestegard JH (1990) Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins 8:377–385
Torda AE, Brunne RM, Huber T, Kessler H, Van Gunsteren WF (1993) Structure refinement using time-averaged J-coupling constant restraints. J Biomol NMR 3:55–66
Wagner G, Wüthrich K (1982) Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol 160:343–361
Pervushin K et al (1998) NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc Natl Acad Sci U S A 95:14147–14151
Cordier F, Rogowski M, Grzesiek S, Bax A (1999) Observation of through-hydrogen-bond 2hJHC' in a perdeuterated protein. J Magnet Res 140:510–512
Bonvin AMJJ, Houben K, Guenneugues M, Kaptein R, Boelens R (2001) Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C“ scalar couplings (3hbJNC”). J Biomol NMR 21:221–233
Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16
Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15:563–570
Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540
Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738
Fushman D, Varadan R, Assfalg M (2004) Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog Nucl Magn Reson Spectrosc 44:189–214
Tjandra N, Garrett DS, Gronenborn AM, Bax A, Clore GM (1997) Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat Struct Biol 4:443–449
Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. ChemBioChem 6:1536–1549
Banci L et al (2004) Paramagnetism-based restraints for Xplor-NIH. J Biomol NMR 28:249–261
Bertini I, Luchinat C, Parigi G (2002) Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson 14:259–286
Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magnet Res 160:65–73
Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298
Hus JC, Marion D, Blackledge M (2000) De novo determination of protein structure by NMR using orientational and long-range order restraints. J Mol Biol 298:927–936
Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688
van der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718
Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins 47:393–402
Montelione GT et al (2013) Recommendations of the wwPDB NMR validation task force. Structure 21(9):1563–1570
Kirchner DK, Güntert P (2011) Objective identification of residue ranges for the superposition of protein structures. BMC Bioinformatics 12:170
Mao B, Guan R, Montelione GT (2011) Improved technologies now routinely provide protein NMR structures useful for molecular replacement. Structure 19:757–766
Vuister GW, Fogh RH, Hendrickx PMS, Doreleijers JF, Gutmanas A (2013) An overview of tools for the validation of protein NMR structures. J Biomol NMR 58(4):259–285
Spronk C, Nabuurs SB, Krieger E (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 45:315–337
van der Schot G et al (2013) Improving 3D structure prediction from chemical shift data. J Biomol NMR 57:27–35
Rosato A et al (2009) CASD-NMR: critical assessment of automated structure determination by NMR. Nat Methods 6:625–626
Rosato A et al (2012) Blind testing of routine, fully automated determination of protein structures from NMR data. Structure 20:227–236
Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696
Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223
Cheung M-S, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223–233
Wishart DS, Sykes BD (1994) Chemical shifts as a tool for structure determination. Methods Enzymol 239:363–392
Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971
Wassenaar TA, et al (2012) WeNMR: structural biology on the grid. J Grid Comp 10:743–767
Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674
Guerry P, Herrmann T (2012) Comprehensive automation for NMR structure determination of proteins. Methods Mol Biol 831:429–451
Linge JP, Habeck M, Rieping W, Nilges M (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316
Raman S et al (2010) Accurate automated protein NMR structure determination using unassigned NOESY data. J Am Chem Soc 132:202–207
Linge JP, O'Donoghue SI, Nilges M (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol 339:71–90
Seavey BR, Farr EA, Westler WM, Markley JL (1991) A relational database for sequence-specific protein NMR data. J Biomol NMR 1:217–236
Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795
Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56
Laskowski RA, Rullmann J, MacArthur MW (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486
Herráez A (2006) Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ 34:255–261
Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(51–5):29–32
Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355
Wang L, Eghbalnia HR, Bahrami A, Markley JL (2005) Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32:13–22
Wang L, Markley JL (2009) Empirical correlation between protein backbone 15N and 13C secondary chemical shifts and its application to nitrogen chemical shift re-referencing. J Biomol NMR 44:95–99
Wang B, Wang Y, Wishart DS (2010) A probabilistic approach for validating protein NMR chemical shift assignments. J Biomol NMR 47:85–99
Ginzinger SW, Gerick F, Coles M, Heun V (2007) CheckShift: automatic correction of inconsistent chemical shift referencing. J Biomol NMR 39:223–227
Rieping W, Vranken WF (2010) Validation of archived chemical shifts through atomic coordinates. Proteins 78:2482–2489
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Vranken, W.F., Vuister, G.W., Bonvin, A.M.J.J. (2015). NMR-Based Modeling and Refinement of Protein 3D Structures. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_16
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1465-4_16
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-1464-7
Online ISBN: 978-1-4939-1465-4
eBook Packages: Springer Protocols