Skip to main content

The Use of Experimental Structures to Model Protein Dynamics

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high—for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods—Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step and show how to use these programs and tools. We also include computer programs to generate movies based on PCs and ENM modes and describe how to visualize them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242, PMCID:PMC102472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hotelling H (1993) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  3. Manly B (1986) Multivariate statistics—a primer. Chapman & Hall, Boca Raton

    Google Scholar 

  4. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(6):559–572

    Article  Google Scholar 

  5. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  PubMed  CAS  Google Scholar 

  6. Amadei A, Linssen AB, de Groot BL, van Aalten DM, Berendsen HJ (1996) An efficient method for sampling the essential subspace of proteins. J Biomol Struct Dyn 13:615–625

    Article  PubMed  CAS  Google Scholar 

  7. Teodoro ML, Philips GN Jr, Kavraki LE (2002) A dimensionality reduction approach to modeling protein flexibility. J Comput Biol 10:299–308

    Google Scholar 

  8. Teodoro ML, Philips GN Jr, Kavraki LE (2003) Understanding protein flexibility through dimensionality reduction. J Comput Biol 10:617–634

    Article  PubMed  CAS  Google Scholar 

  9. Howe PW (2001) Principal components analysis of protein structure ensembles calculated using NMR data. J Biomol NMR 20:61–70

    Article  PubMed  CAS  Google Scholar 

  10. Yang L, Song G, Carriquiry A, Jernigan RL (2008) Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Structure 16:321–330, PMCID:PMC2350220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Yang LW, Eyal E, Bahar I, Kitao A (2009) Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 25:606–614, PMCID:PMC2647834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Zimmermann MT, Kloczkowski A, Jernigan RL (2011) MAVENs: motion analysis and visualization of elastic networks and structural ensembles. BMC Bioinformatics 12:264, PMCID:PMC3213244

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27:1575–1577, PMCID:PMC3102222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22:2695–2696

    Article  PubMed  CAS  Google Scholar 

  15. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515, PMCID:PMC1301252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Bahar I, Jernigan RL (1994) Cooperative structural transitions induced by non-homogeneous intramolecular interactions in compact globular proteins. Biophys J 66:467–481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  18. Bahar I, Erman B, Haliloglu T, Jernigan RL (1997) Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. Biochemistry 36:13512–13523

    Article  PubMed  CAS  Google Scholar 

  19. Bahar I, Jernigan RL (1997) Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol 266:195–214

    Article  PubMed  CAS  Google Scholar 

  20. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592, PMCID:PMC1482533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Chennubhotla C, Rader AJ, Yang LW, Bahar I (2005) Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys Biol 2:S173–S180

    Article  PubMed  CAS  Google Scholar 

  22. Jernigan RL, Yang L, Song G, Doruker P (2008) Elastic network models of coarse-grained proteins are effective for studying the structural control exerted over their dynamics. In: Voth G (ed) Coarse-graining of condensed phase and biomolecular systems. Taylor and Francis, Boca Raton, pp 237–254

    Google Scholar 

  23. Bahar I (2010) On the functional significance of soft modes predicted by coarse-grained models for membrane proteins. J Gen Physiol 135:563–573, PMCID:PMC2888054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ichiye T, Karplus M (1987) Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation. Proteins 2:236–259

    Article  PubMed  CAS  Google Scholar 

  25. Kuriyan J, Petsko GA, Levy RM, Karplus M (1986) Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. J Mol Biol 190:227–254

    Article  PubMed  CAS  Google Scholar 

  26. Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comput Stat 2:433–459

    Article  Google Scholar 

  27. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6

    Article  PubMed  CAS  Google Scholar 

  28. Yang L, Song G, Jernigan RL (2007) How well can we understand large-scale protein motions using normal modes of elastic network models? Biophys J 93:920–929, PMCID:PMC1913142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Andricioaei I, Karplus M (2001) On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 115:6289–6292

    Article  CAS  Google Scholar 

  30. Harte WE Jr, Swaminathan S, Mansuri MM, Martin JC, Rosenberg IE, Beveridge DL (1990) Domain communication in the dynamical structure of human immunodeficiency virus 1 protease. Proc Natl Acad Sci U S A 87:8864–8868, PMCID:PMC55060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Hornak V, Okur A, Rizzo RC, Simmerling C (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci U S A 103:915–920, PMCID:PMC1347991

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Larry Wall (2011) Perl 5. Version 5.12.4

    Google Scholar 

  33. Matlab Version 7.11.0.584 (2010) The MathWorks Inc., Natick, Massachusetts

    Google Scholar 

  34. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins 64:559–574

    Article  PubMed  CAS  Google Scholar 

  35. The PyMOL Molecular Graphics System Version 1.4. (2012) Schrödinger, LLC

    Google Scholar 

  36. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309, PMCID:PMC1084323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Holm L, Sander C (1996) Mapping the protein universe. Science 273:595–603

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support provided by NIH Grant R01GM072014 and NSF Grant MCB-1021785.

We used several Matlab functions from MAVEN by Zimmerman et al. [12] as mentioned in Subheading 4. MAVEN is also useful to compute PCs, PC-plot, ANM modes, overlap between PCs and ANM modes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Jernigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Katebi, A.R., Sankar, K., Jia, K., Jernigan, R.L. (2015). The Use of Experimental Structures to Model Protein Dynamics. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics