Skip to main content

PNA-Based Fluorescence In Situ Hybridization for Identification of Bacteria in Clinical Samples

  • Protocol
  • First Online:
Book cover In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1211))

Abstract

Fluorescence in situ hybridization with PNA probes (PNA-FISH) that target specific bacterial ribosomal RNA sequences is a powerful and rapid tool for identification of bacteria in clinical samples. PNA can diffuse readily through the bacterial cell wall due to its uncharged backbone, and PNA-FISH can be performed with high specificity due to the extraordinary thermal stability of RNA-PNA hybrid complexes. We describe a PNA-FISH procedure and provide examples of the application of PNA-FISH for the identification of bacteria in chronic wounds, cystic fibrosis lungs, and soft tissue fillers. In all these cases, bacteria can be identified in biofilm aggregates, which may explain their recalcitrance to antibiotic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann R, Krumholz L, Stahl DA (1990) Fluorescent-oligo-nucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Giovannoni SJ, DeLong EF, Olsen GJ et al (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    PubMed  CAS  PubMed Central  Google Scholar 

  3. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 243:1360–1363

    Article  PubMed  CAS  Google Scholar 

  4. Nielsen PE, Egholm M, Berg RH et al (1991) Sequence selective recognition of DNA by strand displacement with a thymine substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  5. Egholm M, Buchardt O, Christensen L et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365:566–568

    Article  PubMed  CAS  Google Scholar 

  6. Lefmann M, Schweickert B, Buchholz P et al (2006) Evaluation of peptide nucleic acid-fluorescence in situ hybridization for identification of clinically relevant mycobacteria in clinical specimens and tissue sections. J Clin Microbiol 44:3760–7376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Seidell JC (2000) Obesity, insulin resistance and diabetes—a worldwide epidemic. Br J Nutr 83(Suppl 1):S5–S8

    PubMed  CAS  Google Scholar 

  8. James PT (2004) Obesity: the worldwide epidemic. Clin Dermatol 22:276–280

    Article  PubMed  Google Scholar 

  9. James PT, Leac R, Kalamara R et al (2001) The worldwide obesity epidemic. Obes Res Suppl 4:228S–233S

    Google Scholar 

  10. Mark DB, Van de Verf FJ, Simes RJ et al (2007) Cardiovascular disease on a global scale: defining the forward for research and practice. Eur Heart J 28:2678–2684

    Article  PubMed  Google Scholar 

  11. Gottrup F (2004) A specialized wound healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg 187:38S–43S

    Article  PubMed  Google Scholar 

  12. Hahler B (2006) An overview of dermatological conditions commonly associated with the obese patient. Ostomy Wound Manage 52:34–36

    PubMed  Google Scholar 

  13. Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427

    Article  PubMed  CAS  Google Scholar 

  14. Schultz GS, Sibbald RG, Falanga V et al (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11(Suppl 1):S1–S28

    Article  PubMed  Google Scholar 

  15. Bjarnsholt T, Kirketerp-Moller K, Jensen PO et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16: 2–10

    Article  PubMed  Google Scholar 

  16. Kirketerp-Møller K, Jensen PO, Fazli M et al (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46:2717–2722

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B et al (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47:4084–4089

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolcott RD, Rhoads DD (2008) A study of biofilm-based wound management in subjects with critical limb ischaemia. J Wound Care 17:145–148, 150–2, 154–5

    Article  PubMed  CAS  Google Scholar 

  19. Wolcott RD, Rhoads DD, Bennett ME et al (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19:45–46, 48–50, 52, 3

    Article  PubMed  CAS  Google Scholar 

  20. Boucher RC (2002) An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 54:1359–1371

    Article  PubMed  CAS  Google Scholar 

  21. Donaldson SH, Boucher RC (2003) Update on pathogenesis of cystic fibrosis lung disease. Curr Opin Pulm Med 9:486–491

    Article  PubMed  Google Scholar 

  22. Szaff M, Høiby N, Flensborg EW (1983) Frequent antibiotic therapy improves survival of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection. Acta Paediatr Scand 72: 651–657

    Article  PubMed  CAS  Google Scholar 

  23. Høiby N, Koch C (2000) Maintenance treatment of chronic pseudomonas aeruginosa infection in cystic fibrosis. Thorax 55:349–350

    Article  PubMed  PubMed Central  Google Scholar 

  24. Høiby N (2011) Recent advances in the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis. BMC Med 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bjarnsholt T, Jensen PO, Fiandaca MJ et al (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558

    Article  PubMed  Google Scholar 

  26. Broder KW, Cohen SR (2006) An overview of permanent and semipermanent fillers. Plast Reconstr Surg 118:7S–14S

    Article  PubMed  CAS  Google Scholar 

  27. Christensen L (2007) Normal and pathologic tissue reactions to soft tissue gel fillers. Dermatol Surg 33(Suppl 2):S168–S175

    PubMed  CAS  Google Scholar 

  28. Christensen L, Breiting V, Janssen M et al (2005) Adverse reactions to injectable soft tissue permanent fillers. Aesthetic Plast Surg 29:34–48

    Article  PubMed  Google Scholar 

  29. Christensen L, Breiting V, Vuust J et al (2006) Adverse reactions following injection with a permanent facial filler polyacrylamide hydrogel (Aquamid): cause and treatment. Eur J Plast Surg 28:464

    Article  Google Scholar 

  30. Christensen LH (2009) Host tissue interaction, fate, and risks of degradable and nondegradable gel fillers. Dermatol Surg 35(Suppl 2): 1612–1619

    Article  PubMed  CAS  Google Scholar 

  31. Bjarnsholt T, Tolker-Nielsen T, Givskov M et al (2009) Detection of bacteria by FISH in culture-negative soft tissue filler lesions. Dermatol Surg 35:1620–1624

    Article  PubMed  CAS  Google Scholar 

  32. Christensen L, Breiting V, Bjarnsholt T et al (2013) Bacterial infection as a likely cause of adverse reactions to polyacrylamide hydrogel fillers in cosmetic surgery. Clin Infect Dis 56: 1438–1444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Lundbeck Foundation, the Danish Strategic Research Council, and the Danish Council for Independent Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Tolker-Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fazli, M., Bjarnsholt, T., Høiby, N., Givskov, M., Tolker-Nielsen, T. (2014). PNA-Based Fluorescence In Situ Hybridization for Identification of Bacteria in Clinical Samples. In: Nielsen, B. (eds) In Situ Hybridization Protocols. Methods in Molecular Biology, vol 1211. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1459-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1459-3_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1458-6

  • Online ISBN: 978-1-4939-1459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics