Skip to main content

Zinc-Based Fixation for High-Sensitivity In Situ Hybridization: A Nonradioactive Colorimetric Method for the Detection of Rare Transcripts on Tissue Sections

  • Protocol
  • First Online:
In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1211))

Abstract

Nonradioactive colorimetric in situ hybridization (NoRISH) has been widely applied to analyze gene expression at the single-cell level. Zinc fixation is time efficient and provides excellent tissue morphology. Furthermore, it improves the preservation of the RNA, facilitating the detection of rare transcripts or the identification of expressing cells scattered within a tissue. Here we present a rapid, highly sensitive NoRISH method that uses a zinc-salt-based fixative and is especially suitable for the study of genes expressed at low levels and/or in a small number of cells within a structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carter BS, Fletcher JS, Thompson RC (2010) Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription. Methods 52:322–331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. van der Ploeg M (2000) Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44:7–42

    PubMed  Google Scholar 

  3. Darby IA, Bisucci T et al (2006) In situ hybridization using cRNA probes: isotopic and nonisotopic detection methods. Methods Mol Biol 326:17–31

    PubMed  CAS  Google Scholar 

  4. Higo N, Oishi T et al (1999) Quantitative non-radioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. Cereb Cortex 9:317–320

    Article  PubMed  CAS  Google Scholar 

  5. Larsson L, Traasdahl B, Hougaard B (1991) Quantitative non-radioactive in situ hybridization. Model studies and studies on pituitary proopiomelanocortin cells after adrenalectomy. Histochem Cell Biol 95:209–215

    CAS  Google Scholar 

  6. Robbins E, Baldino F et al (1991) Quantitative non-radioactive in situ hybridization of preproenkephalin mRNA with digoxigenin-labeled cRNA probes. Anat Rec 231:559–562

    Article  PubMed  CAS  Google Scholar 

  7. Chevalier J, Yi J et al (1997) Biotin and digoxigenin as labels for light and electron microscopy in situ hybridization probes: where do we stand? J Histochem Cytochem 45:481–491

    Article  PubMed  CAS  Google Scholar 

  8. Höfler H, Childers H et al (1986) In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem J 18:597–604

    Article  Google Scholar 

  9. Speel EJ, Hopman AH, Komminoth P (1999) Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J Histochem Cytochem 47(3):281–288

    Article  PubMed  CAS  Google Scholar 

  10. Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463

    Article  PubMed  CAS  Google Scholar 

  11. Roth KA, Adler K, Bobrow MN (1999) 9 enhanced tyramide signal amplification immunohistochemical detection. J Histochem Cytochem 47:1644D–1645D

    PubMed  Google Scholar 

  12. Jonker A, de Boer PA et al (1997) Towards quantitative in situ hybridization. J Histochem Cytochem 45:413–423

    Article  PubMed  CAS  Google Scholar 

  13. Acloque H, Wilkinson DG, Nieto MA (2008) In situ hybridization analysis of chick embryos in whole-mount and tissue sections. Meth Cell Biol 87:169–185

    Article  CAS  Google Scholar 

  14. Cinar O, Semiz O, Can A (2006) Can a microscopic survey on the efficiency of well-known routine chemical fixatives on cryosections. Acta histochem 108:487–496

    Article  PubMed  CAS  Google Scholar 

  15. Cox ML, Schray CL et al (2006) Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp Mol Pathol 80:183–191

    Article  PubMed  CAS  Google Scholar 

  16. Gillespie JW, Best CJ et al (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 160:444–457

    Article  Google Scholar 

  17. Kiernan J (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today 1:8–12

    Google Scholar 

  18. Griffiths G (1993) Fixation for fine structural preservation and immunocyto-chemistry. In: Gareth (ed) fine structure immunocytochemistry (pp 26–89). Springer, Berlin

    Google Scholar 

  19. Beckstead JH (1994) A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem 42:1127–1134

    Article  PubMed  CAS  Google Scholar 

  20. Wester K, Asplund A et al (2003) Zinc-based fixative improves preservation of genomic DNA and proteins in histoprocessing of human tissues. Lab Invest 83:889–899

    Article  PubMed  CAS  Google Scholar 

  21. Lykidis D, Van Noorden S et al (2007) Novel zinc-based fixative for high quality DNA, RNA and protein analysis. Nucl Acids Res 35:e85. doi:10.1093/nar/gkm433

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paavilainen L, Edvinsson A et al (2010) The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J Histochem Cytochem 58(3):237–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Stylianopoulou E, Lykidis D et al (2012) A rapid and highly sensitive method of non radioactive colorimetric in situ hybridization for the detection of mRNA on tissue sections. PLoS One 7(3):e33898. doi:10.1371/journal.pone.0033898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucl Acids Res 136:223–6236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grigoriou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stylianopoulou, E., Skavdis, G., Grigoriou, M. (2014). Zinc-Based Fixation for High-Sensitivity In Situ Hybridization: A Nonradioactive Colorimetric Method for the Detection of Rare Transcripts on Tissue Sections. In: Nielsen, B. (eds) In Situ Hybridization Protocols. Methods in Molecular Biology, vol 1211. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1459-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1459-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1458-6

  • Online ISBN: 978-1-4939-1459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics