Skip to main content

A Novel Gas Chromatographic Method for Determination of Malondialdehyde from Oxidized DNA

  • Protocol
  • First Online:
Book cover Advanced Protocols in Oxidative Stress III

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1208))

Abstract

Malondialdehyde (MA) is known to form from various lipids upon oxidation as one of secondary oxidation products. Determination of MA formed from lipid peroxidation has been used to examine occurrence of oxidative damages associated with many diseases, such as cancer, Alzheimer’s, arthritis, inflammation, diabetes, atherosclerosis, and AIDS as well as aging. Analysis of MA is, however, extremely difficult because it is highly reactive and readily polymerized and forming adducts with biological substances such as proteins, phospholipids, and DNA (Shibamoto, J Pharm Biomed Anal 41:12–25, 2002). Gas chromatographic method using stable derivative, 1-methylpyrazole was advanced and has been successfully used to analyze MA in various lipids and lipid-rich foods. This method was also applied to determine MA formed from DNA and related compounds. The amounts found in oxidized 2′-deoxyribonucleotides were 213.8 nmol/16 mmol in 2′-deoxyguanosine, 130.6 nmol/16 mmol in 2′-deoxycytidine, 85.1 nmol/16 mmol in 2′-deoxyadenosine, and 84.5 nmol/16 mmol in thymidine. When the antioxidant activity of flavonoids and anthocyanins against calf thymus DNA oxidized with Fenton’s reagent was examined using this newly developed gas chromatographic method, antioxidant activity of flavonoids and anthocyanins ranged from 48.5 % (catechin) to 29.9 % (apigenin) and from 45.0 % (callistephin) to 10.2 % (cyaniding), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shibamoto T (2002) Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J Pharm Biomed Anal 41:12–25

    Article  Google Scholar 

  2. Moon JK, Shibamoto T (2009) Antioxidant assays for plant and food components. J Agric Food Chem 57:1655–1666

    Article  PubMed  CAS  Google Scholar 

  3. Frankel EN, Neff WE (1983) Formation of malonaldehyde from lipid oxidation products. Biochim Biophys Acta 754:264–270

    Article  CAS  Google Scholar 

  4. Pryor WA, Stanley JP (1975) A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation (Letter). J Org Chem 40:3615–3617

    Article  PubMed  CAS  Google Scholar 

  5. Simic MG, Karel M (eds) (1979) Autoxidation in food and biological systems. Plenum Press, New York, pp 141–170

    Google Scholar 

  6. Matsuo M (1985) Formation and degradation of peroxylipids. In: Uchiyama M, Matsuo M, Sagai M (eds) Peroxide lipid in biological systems. Japan Scientific Society Press, Tokyo, pp 13–44

    Google Scholar 

  7. Yasuhara A, Tanaka Y, Hengel M, Shibamoto T (2003) Gas chromatographic investigation of acrylamide formation in browning model systems. J Agric Food Chem 51:3999–4003

    Article  PubMed  CAS  Google Scholar 

  8. Giera M, Lingeman H, Wilfried M, Niessen A (2012) Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA): a brief overview. Chromatographia 75:433–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Umano K, Dennis KJ, Shibamoto T (1988) Analysis of free malondialdehyde in photoirradiated corn oil and beef fat via a pyrazole derivative. Lipids 23:811–814

    Article  PubMed  CAS  Google Scholar 

  10. Dennis KJ, Shibamoto T (1989) Production of malonaldehyde from squalene, a major skin surface lipid, during UV-irradiation. Photochem Photobiol 49:711–716

    Article  PubMed  CAS  Google Scholar 

  11. Dennis KJ, Shibamoto T (1990) Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation. Lipids 25:460–464

    Article  PubMed  CAS  Google Scholar 

  12. Tamura H, Shibamoto T (1991) Gas chromatographic analysis of malonaldehyde and 4-hydroxy-2-(E)-nonenal produced from arachidonic acid and linoleic acid in a lipid peroxidation model system. Lipids 26:170–173

    Article  PubMed  CAS  Google Scholar 

  13. Wong JW, Yeo CH, Shibamoto T (1991) Determination of malonaldehyde and formaldehyde formed from fatty acid ethyl esters upon microwave and thermal heating. J Agric Food Chem 39:2260–2262

    Article  CAS  Google Scholar 

  14. Niyati-Shirkhodaee F, Shibamoto T (1992) Formation of toxic aldehydes in cod liver oil after ultraviolet irradiation. J Am Oil Chem Soc 69:1254–1256

    Article  CAS  Google Scholar 

  15. Nishiyama T, Hagiwara Y, Hagiwara H, Shibamoto T (1993) Inhibition of malonaldehyde formation from lipids by an isoflavonoid isolated from young green barley leaves. J Am Oil Chem Soc 70:811–813

    Article  CAS  Google Scholar 

  16. Miyake T, Shibamoto T (1996) Simultaneous determination of acrolein, malonaldehyde, and 4-hydroxy-2-nonenal produced from lipids oxidized with Fenton’s reagent. Food Chem Toxicol 34:1009–1011

    Article  PubMed  CAS  Google Scholar 

  17. Miyake T, Shibamoto T (1998) Formation of malonaldehyde in the presence of probucol, an anti-atherosclerosis drug. Food Chem Toxicol 36:841–847

    Article  PubMed  CAS  Google Scholar 

  18. Fujioka K, Shibamoto T (2006) Determination of toxic carbonyl compounds in cigarette smoke. Environ Toxicol 21:47–54

    Article  PubMed  CAS  Google Scholar 

  19. Lee SJ, Umano K, Shibamoto T, Lee KG (2005) Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem 91:131–137

    Article  CAS  Google Scholar 

  20. Fujioka K, Shibamoto T (2004) Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation. Lipids 39:481–486

    Article  PubMed  CAS  Google Scholar 

  21. Benedet JA, Shibamoto T (2008) Role of transition metals, Fe(II), Cr(II), Pb(II), and Cd(II) in lipid peroxidation. Food Chem 107:165–168

    Article  CAS  Google Scholar 

  22. Nicholson T, Khademi H, Moghadasian MH (2013) The role of marine n-3 fatty acids in improving cardiovascular health: a review. Food Funct 4:357–365

    Article  PubMed  CAS  Google Scholar 

  23. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  24. Kitta K, Hagiwara Y, Shibamoto T (1992) Antioxidative activity of an isoflavonoid, 2″-O-glycosylisovitexin isolated from green barley leaves. J Agric Food Chem 40:1843–1845

    Article  CAS  Google Scholar 

  25. Yeo HCH, Shibamoto T (1992) Formation of formaldehyde and malonaldehyde by photooxidation of squalene. Lipids 27:50–53

    Article  PubMed  CAS  Google Scholar 

  26. Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem 55:1737–1742

    Article  PubMed  CAS  Google Scholar 

  27. Wei A, Shibamoto T (2010) Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J Agric Food Chem 58:7218–7225

    Article  PubMed  CAS  Google Scholar 

  28. Miyake T, Shibamoto T (1997) Antioxidative activities of natural compounds found in plants. J Agric Food Chem 45:1819–1822

    Article  CAS  Google Scholar 

  29. Lee KG, Shibamoto T, Takeoka GR, See SE, Kim JH, Park BS (2003) Inhibitory effects of plant-derived flavonoids and phenolic acids on malonaldehyde formation from ethyl arachidonate. J Agric Food Chem 51:7203–7207

    Article  PubMed  CAS  Google Scholar 

  30. Ogata J, Hagiwara Y, Hagiwara H, Shibamoto T (1996) Inhibition of malonaldehyde formation by antioxidants from ω-3 polyunsaturated fatty acids. J Am Oil Chem Soc 73:653–656

    Article  CAS  Google Scholar 

  31. Benedet JA, Umeda H, Shibamoto T (2007) Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples. J Agric Food Chem 55:5499–5504

    Article  PubMed  CAS  Google Scholar 

  32. Nishiyama T, Hagiwara Y, Hagiwara H, Shibamoto T (1994) Formation and Inhibition of genotoxic glyoxal and malonaldehyde from phospholipids and fish liver oil upon lipid peroxidation. J Agric Food Chem 42:1728–1731

    Article  CAS  Google Scholar 

  33. Yanagimoto K, Ochi H, Lee KG, Shibamoto T (2004) Antioxidative activities of fractions obtained from brewed coffee. J Agric Food Chem 52:592–596

    Article  PubMed  CAS  Google Scholar 

  34. Fujioka K, Shibamoto T (2005) Improved malonaldehyde assay using headspace solid-phase microextraction and its application to the measurement of the antioxidant activity of phytochemicals. J Agric Food Chem 53:4708–4713

    Article  PubMed  CAS  Google Scholar 

  35. Lee KG, Shibamoto T (2000) Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem 48:4290–4293

    Article  PubMed  CAS  Google Scholar 

  36. Lee KG, Mitchell AE, Shibamoto T (2000) Determination of antioxidant properties of aroma extracts from various beans. J Agric Food Chem 48:4817–4820

    Article  PubMed  CAS  Google Scholar 

  37. Lee KG, Shibamoto T (2001) Antioxidant property of aroma extract isolated from clove bud [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem 74:443–448

    Article  CAS  Google Scholar 

  38. Lee KG, Shibamoto T (2001) Antioxidant activities of volatile components isolated from Eucalyptus species. J Sci Food Agric 81:1573–1579

    Article  CAS  Google Scholar 

  39. Tanaka A, Horiuchi M, Umano K, Shibamoto T (2008) Antioxidant and anti-inflammatory activities of water distillate and its dichloromethane extract from licorice root (Glycyrrhiza uralensis) and chemical composition of dichloromethane extract. J Sci Food Agri 88:1158–1165

    Article  CAS  Google Scholar 

  40. Takahashi M, Shibamoto T (2008) Chemical composition and antioxidant/anti-inflammatory activities of steam distillate from freeze-dried onion (Allium cepa L.) sprout. J Agric Food Chem 56:10462–10467

    Article  PubMed  CAS  Google Scholar 

  41. Sone Y, Moon JK, Mai TT, Thu NN, Asano E, Yamaguchi K, Otsuka Y, Shibamoto T (2011) Antioxidant/anti-inflammatory activities and total phenolic content of extracts obtained from plants grown in Vietnam. J Sci Food Agric 91:2259–2264

    PubMed  CAS  Google Scholar 

  42. Sulaiman SF, Moon JK, Shibamoto T (2011) Investigation of optimum roasting conditions to obtain possible health benefit supplement, antioxidants from coffee beans. J Diet Supp Online: 1–8. www.informahealthcare.com/jds

  43. Nam S, Jang HW, Shibamoto T (2011) Antioxidant activities of extract from teas prepared from medicinal plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata, and their volatile components. J Agric Food Chem 60:9097–9105

    Article  Google Scholar 

  44. Nomi Y, Shimizu S, Sone Y, Tuyet MT, Gia TP, Kamiyama M, Shibamoto T, Shindo K, Otsuka Y (2012) Isolation and antioxidant activity of Zeylaniin A, a new macrocyclic ellagitannin from Syzygium zeylanicum leaves. J Agric Food Chem 60:10263–10269

    Article  PubMed  CAS  Google Scholar 

  45. Wei A, Shibamoto T (2007) Antioxidant activities of essential oil mixture toward skin lipid squalene oxidized by UV irradiation. Cutan Ocul Toxicol 26:227–233

    Article  PubMed  CAS  Google Scholar 

  46. Wong WJ, Hashimoto K, Shibamoto T (1995) Antioxidant activity of rosemary and sage extracts and vitamin E in a model meat system. J Agric Food Chem 43:2707–2712

    Article  CAS  Google Scholar 

  47. Miyake T, Shibamoto T (1998) Inhibition of malonaldehyde and acetaldehyde formation from blood plasma oxidation by naturally occurring antioxidants. J Agric Food Chem 46:3694–3697

    Article  CAS  Google Scholar 

  48. Lee KG, Shibamoto T (2001) Inhibition of malonaldehyde formation from blood plasma oxidation by aroma extracts and aroma components isolated from clove and eucalyptus. Food Chem Toxicol 39:1199–1204

    Article  PubMed  CAS  Google Scholar 

  49. Miyake T, Shibamoto T (1999) Formation of malonaldehyde and acetaldehyde from the oxidation of 2′-deoxyribonucleosides. J Agric Food Chem 47:2782–2785

    Article  PubMed  CAS  Google Scholar 

  50. Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A (2011) DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 711:13027

    Article  Google Scholar 

  51. Kautiainen A, Vaca CE, Granath F (1993) Studies on the relationship between hemoglobin and DNA adducts of malonaldehyde and their stability in vivo. Carcinogenesis 14:705–708

    Article  PubMed  CAS  Google Scholar 

  52. Peluso M, Munnia A, Ceppi M, Giese RW, Catelan D, Rusconi F, Godschalk RW, Biggeri A (2013) Malondialdehyde-deoxyguanosine and bulky DNA adducts in schoolchildren resident in the proximity of the Sarroch industrial estate on Sardinia Island, Italy. Mutagenesis 28(3):315–321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Matsufuji H, Shibamoto T (2004) The role of EDTA in malonaldehyde formation from DNA oxidized by Fenton reagent system. J Agric Food Chem 52:3136–3140

    Article  PubMed  CAS  Google Scholar 

  54. Matsufuji H, Shibamoto T (2004) Inhibition of malonaldehyde formation in oxidized calf thymus DNA with synthetic and natural antioxidants. J Agric Food Chem 52:5759–5763

    Article  PubMed  CAS  Google Scholar 

  55. Matsufuji H, Shibamoto T (2006) Formation and inhibition of genotoxic malonaldehyde from DNA oxidation controlled with EDTA. Food Chem Toxicol 44:236–241

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Shibamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shibamoto, T. (2015). A Novel Gas Chromatographic Method for Determination of Malondialdehyde from Oxidized DNA. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics