Skip to main content

Intracellular Distribution of Glutathionylated Proteins in Cultured Dermal Fibroblasts by Immunofluorescence

Part of the Methods in Molecular Biology book series (MIMB,volume 1208)

Abstract

S-glutathionylation is a mechanism of signal transduction by which cells respond effectively and reversibly to redox inputs. The glutathionylation regulates most cellular pathways. It is involved in oxidative cellular response to insult by modulating the transcription factor Nrf2 and inducing the expression of antioxidant genes (ARE); it contributes to cell survival through nuclear translocation of NFkB and activation of survival genes, and to cell death by modulating the activity of caspase 3. It is involved in mitotic spindle formation during cell division by binding cytoskeletal proteins thus contributing to cell proliferation and differentiation. Glutathionylation also interfaces with the mechanism of phosphorylation by modulating several kinases (PKA, CK) and phosphatases (PP2A, PTEN), thus allowing a cross talk between the two processes of signal transduction. Glutathionylation of proteins may also act on cell metabolism by modulating enzymes involved in glycosylation, in the Krebs cycle and in mitochondrial oxidative phosphorylation. Perturbations in protein glutathionylation status may contribute to the etiology of many diseases, thus it is clear the importance to visualize the distribution of glutathionylated proteins in subcellular compartments. This chapter describes the immunofluorescence technique that permits simultaneous detection of glutathionylated proteins and their localization in cellular compartments, using multiple stained cell samples. By confocal laser microscopy analysis of the immunofluorescent cells it is possible to obtain detailed information of submicroscopic structures inside cells and tissues, and to perform correct co-localization analysis between two proteins. The association between glutathione, nuclear lamina, and cytoskeleton has been investigated by employing a helpful assay consisting on the in situ extraction of the cellular matrix from cultured dermal fibroblasts followed by multiple stainings with several primary antibodies.

This protocol can be used for the detection of the intracellular distribution and expression of interest proteins and can be customized for a large variety of cells and tissues.

Key words

  • Dermal fibroblasts
  • Glutathionylation
  • Nuclear lamina
  • Cytoskeleton
  • In situ extracted matrix
  • Immunofluorescence
  • Confocal microscopy

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1441-8_28
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1441-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 973:488–504

    PubMed  CrossRef  CAS  Google Scholar 

  2. Chai YC, Ashraf SS, Rokutan K, Johnstone RB, Thomas JA (1994) S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys 310:273–281

    PubMed  CrossRef  CAS  Google Scholar 

  3. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    PubMed  CAS  Google Scholar 

  4. Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry. Glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242:1–9

    PubMed  CrossRef  CAS  Google Scholar 

  5. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathionylation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    PubMed  CrossRef  CAS  Google Scholar 

  6. Fratelli M, Demol H, Puype M, Casagrande S, Eberini L, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A 99:3505–3510

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  7. Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I (2004) S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8:201–212

    PubMed  CrossRef  CAS  Google Scholar 

  8. Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S, Bonetto V, Casoni F, Carrozzo R, Federici G, Piemonte F (2003) Actin glutathionylation increases in fibroblasts of patients with Friedreich’s ataxia: a potential role in the pathogenesis of the disease. J Biol Chem 43:42588–42595

    CrossRef  Google Scholar 

  9. Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Jacoba M, Perez-Sala D, Lamas S (2001) Glutathionylation of the p50 subunit of NF-kB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–14142

    PubMed  CrossRef  CAS  Google Scholar 

  10. Dalle-Donne I, Giustarini D, Colombo R, Milzani A, Rossi R (2005) S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism. Free Radic Biol Med 38:1501–1510

    PubMed  CrossRef  CAS  Google Scholar 

  11. Mawatari S, Murakami K (2004) Different types of glutathionylation of hemoglobin can exist in intact erythrocytes. Arch Biochem Biophys 421:108–114

    PubMed  CrossRef  CAS  Google Scholar 

  12. Fratelli M, Demol H, Puype M, Casagrande S, Villa P, Eberini L, Vandekerckhove J, Gianazza E, Ghezzi P (2003) Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells. Proteomics 3:1154–1161

    PubMed  CrossRef  CAS  Google Scholar 

  13. Landino LM, Moynihan KL, Todd JV, Kennett KL (2004) Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun 314:555–560

    PubMed  CrossRef  CAS  Google Scholar 

  14. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    PubMed  CrossRef  CAS  Google Scholar 

  15. Piemonte F, Pastore A, Tozzi G, Tagliacozzi D, Santorelli FM, Carrozzo R, Casali C, Damiano M, Federici G, Bertini E (2001) Glutathione in blood of patients with Friedreich’s ataxia. Eur J Clin Invest 31:1007–1011

    PubMed  CrossRef  CAS  Google Scholar 

  16. Sparaco M, Gaeta LM, Santorelli FM, Passarelli C, Tozzi G, Bertini E, Simonati A, Scaravilli F, Taroni F, Duyckaerts C, Feleppa M, Piemonte F (2009) Friedreich’s ataxia: oxidative stress and cytoskeletal abnormalities. J Neurol Sci 287:111–118

    PubMed  CrossRef  CAS  Google Scholar 

  17. Markovic J, Borrás C, Ortega A, Sastre J, Viña J, Pallardó FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282(28):20416–20424

    PubMed  CrossRef  CAS  Google Scholar 

  18. Pallardó FV, Markovic J, García JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30:77–85

    PubMed  CrossRef  Google Scholar 

  19. Brennan JP, Miller JIA, Fuller W, Wait R, Begum S, Dunn MJ, Eaton P (2006) The utility of N, N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 5:215–225

    PubMed  CrossRef  CAS  Google Scholar 

  20. Lim SY, Raftery MJ, Goyette J, Geczy CL (2010) S-Glutathionylation regulates inflammatory activities of S100A9. J Biol Chem 285(19):14377–14388

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  21. Petrini S, Passarelli C, Pastore A, Tozzi G, Coccetti M, Colucci M, Bianchi M, Carrozzo R, Bertini E, Piemonte F (2012) Protein glutathionylation in cellular compartments: a constitutive redox signal. Redox Rep 17(2):63–71

    PubMed  CrossRef  CAS  Google Scholar 

  22. Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12(2):116–125

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  23. Squarzoni S, Sabatelli P, Ognibene A, Toniolo D, Cartegni L, Cobianchi F, Petrini S, Merlini L, Maraldi NM (1998) Immunocytochemical detection of emerin within the nuclear matrix. Neuromuscul Disord 8:338–344

    PubMed  CrossRef  CAS  Google Scholar 

  24. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    PubMed  CrossRef  CAS  Google Scholar 

  25. Zinchuk V, Grossenbacher-Zinchuk O (2011) Quantitative colocalization analysis of confocal fluorescence microscopy images. Curr Protoc Cell Biol Chapter 4:Unit 4.19. doi: 10.1002/0471143030.cb0419s52

Download references

Acknowledgments

We gratefully thank Maney Publishing and Redox Report journal for the permission to reuse part of material (Figs. 1, 2, and 4) originally inserted in ref. [21] (article URL: http://www.ingentaconnect.com/content/maney/rer/2012/00000017/00000002/art00003; URLs for the online version of “Redox report” journal: www.maneypublishing.com/journals/rer and http://www.ingentaconnect.com/content/maney/rer).

We thank the Italian Ministry of Health (Ricerca Corrente) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Petrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Petrini, S., D’Oria, V., Piemonte, F. (2015). Intracellular Distribution of Glutathionylated Proteins in Cultured Dermal Fibroblasts by Immunofluorescence. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols