Gene Suppression in Schistosomes Using RNAi

  • Akram A. Da’dara
  • Patrick J. SkellyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1201)


Schistosomiasis is a neglected tropical disease responsible for the death of more than 300,000 people every year. The disease is caused by intravascular parasitic platyhelminths called schistosomes. Treatment and control of schistosomiasis rely on a single drug, praziquantel, and concern exists over the possible emergence of resistance to this drug. The recent completion of the genome sequences of the three main worm species that cause schistosomiasis in humans has raised hope for the development of new interventions to treat the disease. RNA interference (RNAi), a mechanism by which gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous mRNA transcripts, has emerged as an important tool to evaluate and validate new potential drug targets. In addition, RNAi has been used to explore the basic biology of these debilitating parasites. RNAi can be achieved in all stages of the parasite’s life cycle in which it has been tested. In this review, we describe methods for applying RNAi to suppress gene expression in the intra-mammalian life stages (adults and schistosomula) of Schistosoma mansoni. We describe procedures for isolating and culturing the parasites, preparing and delivering dsRNA targeting a specific gene, as well as a procedure to evaluate gene suppression by quantitative real-time PCR.

Key words

Schistosome Schistosomiasis Trematode Schistosomula RNA interference RNAi siRNA dsRNA Electroporation qRT-PCR 



This work was supported by the National Institutes of Health-National Institute of Allergy and Infectious Diseases (grant number AI-056273). Schistosome-infected snails were provided by the Biomedical Research Institute through the National Institutes of Health (NIAID contract number HHSN272201000009I).


  1. 1.
    Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425CrossRefPubMedGoogle Scholar
  2. 2.
    Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM et al (2002) Schistosomiasis. N Engl J Med 346:1212–1220CrossRefPubMedGoogle Scholar
  3. 3.
    Abdul-Ghani R, Loutfy N, el-Sahn A, Hassan A (2009) Current chemotherapy arsenal for schistosomiasis mansoni: alternatives and challenges. Parasitol Res 104:955–965CrossRefPubMedGoogle Scholar
  4. 4.
    Doenhoff MJ, Pica-Mattoccia L (2006) Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev Anti Infect Ther 4:199–210CrossRefPubMedGoogle Scholar
  5. 5.
    Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, Wynn NB et al (2009) Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3:e504CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667CrossRefPubMedGoogle Scholar
  7. 7.
    Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–358CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Schistosoma japonicum Genome Sequencing and Functional Analysis and Consortium (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460: 345–351CrossRefGoogle Scholar
  9. 9.
    Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z et al (2012) Whole-genome sequence of Schistosoma haematobium. Nat Genet 44: 221–225CrossRefPubMedGoogle Scholar
  10. 10.
    Skelly PJ, Da’dara A, Harn D (2003) Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int J Parasitol 33: 363–369CrossRefPubMedGoogle Scholar
  11. 11.
    Boyle JP, Wu XJ, Shoemaker CB, Yoshino TP (2003) Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Mol Biochem Parasitol 128:205–215CrossRefPubMedGoogle Scholar
  12. 12.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [see comments]. Nature 391:806–811CrossRefPubMedGoogle Scholar
  13. 13.
    Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431CrossRefPubMedGoogle Scholar
  14. 14.
    Hunter CP (1999) Genetics: a touch of elegance with RNAi. Curr Biol 9:R440–R442CrossRefPubMedGoogle Scholar
  15. 15.
    Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026CrossRefPubMedGoogle Scholar
  16. 16.
    Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2:70–75CrossRefPubMedGoogle Scholar
  17. 17.
    Schoppmeier M, Damen WG (2001) Double-stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionarily conserved in arthropod appendage formation. Dev Genes Evol 211:76–82CrossRefPubMedGoogle Scholar
  18. 18.
    Morris JC, Wang Z, Drew ME, Englund PT (2002) Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library. EMBO J 21:4429–4438CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Shi H, Djikeng A, Tschudi C, Ullu E (2004) Argonaute protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Mol Cell Biol 24: 420–427CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Petrocca F, Lieberman J (2011) Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 29:747–754CrossRefPubMedGoogle Scholar
  21. 21.
    Nemunaitis J, Rao DD, Liu SH, Brunicardi FC (2011) Personalized cancer approach: using RNA interference technology. World J Surg 35(8):1700–1714CrossRefPubMedGoogle Scholar
  22. 22.
    Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340CrossRefPubMedGoogle Scholar
  23. 23.
    Hong-Geller E, Micheva-Viteva SN (2010) Functional gene discovery using RNA interference-based genomic screens to combat pathogen infection. Curr Drug Discov Technol 7:86–94CrossRefPubMedGoogle Scholar
  24. 24.
    Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arner ES et al (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4:e206CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Bhardwaj R, Krautz-Peterson G, Da’dara A, Tzipori S, Skelly PJ (2011) Tegumental phosphodiesterase SmNPP-5 is a virulence factor for schistosomes. Infect Immun 79:4276–4284CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Ndegwa D, Krautz-Peterson G, Skelly PJ (2007) Protocols for gene silencing in schistosomes. Exp Parasitol 117:284–291CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 153: 194–202CrossRefPubMedGoogle Scholar
  28. 28.
    Stefanic S, Dvorak J, Horn M, Braschi S, Sojka D, Ruelas DS et al (2010) RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 4:e850CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mourao MM, Dinguirard N, Franco GR, Yoshino TP (2009) Phenotypic screen of early-developing larvae of the blood fluke, schistosoma mansoni, using RNA interference. PLoS Negl Trop Dis 3:e502CrossRefPubMedGoogle Scholar
  30. 30.
    Krautz-Peterson G, Simoes M, Faghiri Z, Ndegwa D, Oliveira G, Shoemaker CB et al (2010) Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 6:e1000932CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Faghiri Z, Skelly PJ (2009) The role of tegumental aquaporin from the human parasitic worm, Schistosoma mansoni, in osmoregulation and drug uptake. FASEB J 23:2780–2789CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Correnti JM, Brindley PJ, Pearce EJ (2005) Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol Biochem Parasitol 143: 209–215CrossRefPubMedGoogle Scholar
  33. 33.
    Krautz-Peterson G, Bhardwaj R, Faghiri Z, Tararam CA, Skelly PJ (2010) RNA interference in schistosomes: machinery and methodology. Parasitology 137:485–495CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Rinaldi G, Morales ME, Alrefaei YN, Cancela M, Castillo E, Dalton JP et al (2009) RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs. Mol Biochem Parasitol 167:118–126CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Lewis F (2001) Schistosomiasis. Curr Protoc Immunol Chapter 19: Unit 19 11Google Scholar
  36. 36.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonUSA

Personalised recommendations