Skip to main content

Identification and Analysis of Ingi-Related Retroposons in the Trypanosomatid Genomes

  • Protocol
  • First Online:
Parasite Genomics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1201))

Abstract

Transposable elements (TE), defined as discrete pieces of DNA that can move from one site to another site in genomes, represent significant components of eukaryotic genomes, including trypanosomatids. Up to 5 % of the trypanosomatid genome content is composed of retroposons of the ingi clade, further divided into subclades and subfamilies ranging from short extinct truncated elements (SIDER) to long active elements (ingi). Important differences in ingi-related retroposon content have been reported between trypanosomatid species. For instance, Leishmania spp. have expanded and recycled a whole SIDER family to fulfill an important biological pathway, i.e., regulation of gene expression, while trypanosome genomes are primarily composed of active elements. Here, we present an overview of the computational methods used to identify, annotate, and analyze ingi-related retroposons for providing a comprehensive picture of all these TE families in newly available trypanosomatid genome sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International-Human-Genome-Sequencing-Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  2. Biemont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  CAS  PubMed  Google Scholar 

  3. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90

    Article  CAS  PubMed  Google Scholar 

  4. Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3:1813–1826

    Article  CAS  PubMed  Google Scholar 

  5. Bringaud F, Muller M, Cerqueira GC, Smith M, Rochette A, El-Sayed NM, Papadopoulou B, Ghedin E (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in leishmania. PLoS Pathog 3:e136

    Article  PubMed Central  Google Scholar 

  6. Stevens JR, Noyes HA, Schofield CJ, Gibson W (2001) The molecular evolution of Trypanosomatidae. Adv Parasitol 48:1–56

    Article  CAS  PubMed  Google Scholar 

  7. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  CAS  PubMed  Google Scholar 

  8. Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, Quail MA, Chukualim B, Capewell P, MacLeod A, Melville SE et al (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human African trypanosomiasis. PLoS Negl Trop Dis 4:e658

    Article  PubMed Central  PubMed  Google Scholar 

  9. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  CAS  PubMed  Google Scholar 

  10. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed Central  PubMed  Google Scholar 

  11. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21:2129–2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC et al (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21:2143–2156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Raymond F, Boisvert S, Roy G, Ritt JF, Legare D, Isnard A, Stanke M, Olivier M, Tremblay MJ, Papadopoulou B et al (2012) Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res 40:1131–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Porcel BM, Denoeud, F, Opperdoes F, Noel B, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, Katinka M et al (2014) The Streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genetics 10:e1004007

    Google Scholar 

  16. Motta MC, Martins AC, de Souza SS, Catta-Preta CM, Silva R, Klein CC, de Almeida LG, de Lima Cunha O, Ciapina LP, Brocchi M et al (2013) Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One 8:e60209

    Google Scholar 

  17. Bringaud F, Ghedin E, El-Sayed NM, Papadopoulou B (2008) Role of transposable elements in trypanosomatids. Microbes Infect 10:575–581

    Article  CAS  PubMed  Google Scholar 

  18. Thomas MC, Macias F, Alonso C, Lopez MC (2010) The biology and evolution of transposable elements in parasites. Trends Parasitol 26:350–362

    Article  CAS  PubMed  Google Scholar 

  19. Kimmel BE, Ole-MoiYoi OK, Young JR (1987) Ingi, a 5.2-kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs. Mol Cell Biol 7:1465–1475

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Murphy NB, Pays A, Tebabi P, Coquelet H, Guyaux M, Steinert M, Pays E (1987) Trypanosoma brucei repeated element with unusual structural and transcriptional properties. J Mol Biol 195:855–871

    Article  CAS  PubMed  Google Scholar 

  21. Martin F, Maranon C, Olivares M, Alonso C, Lopez MC (1995) Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. J Mol Biol 247:49–59

    Article  CAS  PubMed  Google Scholar 

  22. Bringaud F, Berriman M, Hertz-Fowler C (2009) Trypanosomatid genomes contain several families of ingi-related retroposons. Eukaryotic Cell 8:1532–1542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hasan G, Turner MJ, Cordingley JS (1984) Complete nucleotide sequence of an unusual mobile element from Trypanosoma brucei. Cell 37:333–341

    Article  CAS  PubMed  Google Scholar 

  24. Bringaud F, Garcia-Perez JL, Heras SR, Ghedin E, El-Sayed NM, Andersson B, Baltz T, Lopez MC (2002) Identification of non-autonomous non-LTR retrotransposons in the genome of Trypanosoma cruzi. Mol Biochem Parasitol 124:73–78

    Article  CAS  PubMed  Google Scholar 

  25. Bringaud F, Biteau N, Zuiderwijk E, Berriman M, El-Sayed NM, Ghedin E, Melville SE, Hall N, Baltz T (2004) The ingi and RIME non-LTR retrotransposons are not randomly distributed in the genome of Trypanosoma brucei. Mol Biol Evol 21:520–528

    Article  CAS  PubMed  Google Scholar 

  26. Bringaud F, Bartholomeu DC, Blandin G, Delcher A, Baltz T, El-Sayed NM, Ghedin E (2006) The Trypanosoma cruzi L1Tc and NARTc non-LTR retrotransposons show relative site-specificity for insertion. Mol Biol Evol 23:411–420

    Article  CAS  PubMed  Google Scholar 

  27. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  29. Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, Andersson B, Bontempi E, Eisen J, Angiuoli S et al (2004) Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol 134:183–191

    Article  CAS  PubMed  Google Scholar 

  30. Bringaud F, Ghedin E, Blandin G, Bartholomeu DC, Caler E, Levin MJ, Baltz T, El-Sayed NM (2006) Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Mol Biochem Parasitol 145:158–170

    Article  CAS  PubMed  Google Scholar 

  31. Smith M, Bringaud F, Papadopoulou B (2009) Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome. BMC Genomics 10:240

    Article  PubMed Central  PubMed  Google Scholar 

  32. Boucher N, Wu Y, Dumas C, Dube M, Sereno D, Breton M, Papadopoulou B (2002) A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. J Biol Chem 277:19511–19520

    Article  CAS  PubMed  Google Scholar 

  33. McNicoll F, Muller M, Cloutier S, Boilard N, Rochette A, Dube M, Papadopoulou B (2005) Distinct 3′-untranslated region elements regulate stage-specific mRNA accumulation and translation in Leishmania. J Biol Chem 280:35238–35246

    Article  CAS  PubMed  Google Scholar 

  34. Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bringaud F, Berriman M, Hertz-Fowler C (2011) TSIDER1, a short and non-autonomous Salivarian trypanosome-specific retroposon related to the ingi6 subclade. Mol Biochem Parasitol 179:30–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Otto TD, Dillon GP, Degrave WS, Berriman M (2011) RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res 39:e57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

FB is supported by the Centre National de la Recherche Scientifique (CNRS), the Université Bordeaux Segalen, and the Laboratoire d’Excellence (LabEx) ParaFrap ANR-11-LABX-0024.

Ingihelper.pl is available at https://sites.google.com/a/nyu.edu/ghedin-lab/tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bringaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bringaud, F., Rogers, M., Ghedin, E. (2015). Identification and Analysis of Ingi-Related Retroposons in the Trypanosomatid Genomes. In: Peacock, C. (eds) Parasite Genomics Protocols. Methods in Molecular Biology, vol 1201. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1438-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1438-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1437-1

  • Online ISBN: 978-1-4939-1438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics