Skip to main content

Exploiting Genetic Variation to Discover Genes Involved in Important Disease Phenotypes

  • Protocol
  • First Online:
Parasite Genomics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1201))

  • 4852 Accesses

Abstract

Elucidating the underlying genetic determinants of disease pathology is still in the early stages for many pathogenic parasites. There have, however, been a number of advances in which natural genetic diversity has been successfully utilized to untangle the often complex interactions between parasite and host. In this chapter we discuss various methods capable of exploiting this natural genetic variation to determine genes involved in phenotypes of interest, using virulence in the pathogenic parasite Trypanosoma brucei as a case study. This species is an ideal system to benefit from such an approach as there are several well-characterized laboratory strains; the parasite undergoes genetic exchange in both the field and the laboratory, and is amenable to efficient reverse genetics and RNAi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaw A (2004) Economics of African Trypanosomiasis. The trypanosomiases. CABI, London, UK

    Google Scholar 

  2. Simarro PP, Diarra A, Postigo JAR, Franco JR, Jannin JG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5:e1007. doi:10.1371/journal.pntd.0001007

    Article  PubMed Central  PubMed  Google Scholar 

  3. World Health Organization (2006) Weekly epidemiological record: relevé épidémiologique hebdomadaire

    Google Scholar 

  4. Odiit M, Coleman PG, Liu W-C, McDermott JJ, Fèvre EM et al (2005) Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Trop Med Int Health 10:840–849. doi:10.1111/j.1365-3156.2005.01470.x

    Article  CAS  PubMed  Google Scholar 

  5. Fèvre EM, Wissmann B, Welburn SC (2008) The burden of human African trypanosomiasis. PLoS Negl Trop Dis 2:e333

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hoare CA (1972) The trypanosomes of mammals. A zoological monograph. Blackwell Scientific Publications, NJ

    Google Scholar 

  7. Beadell JS, Balmer O, Gibson W, Caccone A (2011) Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5:e961

    Article  PubMed Central  PubMed  Google Scholar 

  8. Capewell P, Cooper A, Duffy CW, Tait A, Turner CM et al (2013) Human and animal trypanosomes in Côte d'Ivoire form a single breeding population. PLoS One 8:e67852. doi:10.1371/journal.pone.0067852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gibson W (1986) Will the real Trypanosoma b. gambiense please stand up. Parasitol Today 2:255–257

    Article  CAS  PubMed  Google Scholar 

  10. Mehlitz D, Zillmann U, Scott CM (1982) Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmed Parasitol 33:113–118

    CAS  PubMed  Google Scholar 

  11. Tait A, Babiker EA, Le Ray D (1984) Enzyme variation in Trypanosoma brucei ssp. I. Evidence for the sub-speciation of Trypanosoma brucei gambiense. Parasitology 89:311–326

    Article  PubMed  Google Scholar 

  12. Gibson W, Marshall DC, Godfrey DG (1980) Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Adv Parasitol 18:175–246

    Article  CAS  PubMed  Google Scholar 

  13. Godfrey DG, Scott CM, Gibson WC, Mehlitz D (1987) Enzyme polymorphism and the identity of Trypanosoma brucei gambiense. Parasitology 94:337–347

    Article  CAS  PubMed  Google Scholar 

  14. Capewell P, Veitch NJ, Turner CMR, Raper J, Berriman M et al (2011) Differences between Trypanosoma brucei gambiense groups 1 and 2 in their resistance to killing by trypanolytic factor 1. PLoS Negl Trop Dis 5:e1287. doi:10.1371/journal.pntd.0001287

    Article  PubMed Central  PubMed  Google Scholar 

  15. Balmer O, Beadell JS, Gibson W, Caccone A (2011) Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5:e961. doi:10.1371/journal.pntd.0000961

    Article  PubMed Central  PubMed  Google Scholar 

  16. Turner CMR, Sternberg J, Buchanan N, Smith E, Hide G et al (1990) Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy. Parasitology 106:209–214

    Google Scholar 

  17. Berriman M (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422. doi:10.1126/science.1112642

    Article  CAS  PubMed  Google Scholar 

  18. Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA et al (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human African trypanosomiasis. PLoS Negl Trop Dis 4:e658

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tait A (1980) Evidence for diploidy and mating in trypanosomes. Nature 287:536–538

    Article  CAS  PubMed  Google Scholar 

  20. Jenni L, Marti S, Schweizer J, Betschart B, Le Page RWF et al (1986) Hybrid formation between African trypanosomes during cyclical transmission. Nature 322:173–175. doi:10.1038/322173a0

    Article  CAS  PubMed  Google Scholar 

  21. Bingle LE, Eastlake JL, Bailey M, Gibson W (2001) A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events. Microbiology 147:3231–3240

    CAS  PubMed  Google Scholar 

  22. Peacock L, Ferris V, Bailey M, Gibson W (2008) Fly transmission and mating of Trypanosoma brucei brucei strain 427. Mol Biochem Parasitol 160:100–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Peacock L, Bailey M, Carrington M, Gibson W (2014) Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Curr Biol 24:181–186. doi:10.1016/j.cub.2013.11.044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gibson W, Garside L (1991) Genetic exchange in Trypanosoma brucei brucei: variable chromosomal location of housekeeping genes in different trypanosome stocks. Mol Biochem Parasitol 45:77–89

    Article  CAS  PubMed  Google Scholar 

  25. Macleod A, Tweedie A, McLellan S, Taylor S, Cooper A et al (2005) Allelic segregation and independent assortment in T. brucei crosses: proof that the genetic system is Mendelian and involves meiosis. Mol Biochem Parasitol 143:12–19

    Article  CAS  PubMed  Google Scholar 

  26. Tait A, Macleod A, Tweedie A, Masiga D, Turner CMR (2007) Genetic exchange in Trypanosoma brucei: evidence for mating prior to metacyclic stage development. Mol Biochem Parasitol 151:133–136. doi:10.1016/j.molbiopara.2006.10.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Schweizer J, Tait A, Jenni L (1988) The timing and frequency of hybrid formation in African trypanosomes during cyclical transmission. Parasitol Res 75:98–101. doi:10.1007/BF00932707

    Article  CAS  PubMed  Google Scholar 

  28. Gibson W, Peacock L, Ferris V, Williams K, Bailey M (2008) The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasit Vectors 1:4. doi:10.1186/1756-3305-1-4

    Article  PubMed Central  PubMed  Google Scholar 

  29. Tait A, Buchanan N, Hide G, Turner CMR (1996) Self-fertilisation in Trypanosoma brucei. Mol Biochem Parasitol 76:31–42. doi:10.1016/0166-6851(95)02528-6

    Article  CAS  PubMed  Google Scholar 

  30. Gibson W, Winters K, Mizen G, Kearns J, Bailey M (1997) Intraclonal mating in Trypanosoma brucei is associated with out-crossing. Microbiology 143:909–920

    Article  CAS  PubMed  Google Scholar 

  31. Peacock L, Ferris V, Bailey M, Gibson W (2009) Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei. Parasit Vectors 2:43. doi:10.1186/1756-3305-2-43

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gibson W, Stevens J (1999) Genetic exchange in the Trypanosomatidae. Adv Parasitol 43:1–46. doi:10.1016/S0065-308X(08)60240-7

    Article  CAS  PubMed  Google Scholar 

  33. Koffi M, De Meeûs T, Bucheton B, Solano P, Camara M et al (2009) Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in Western Africa. Proc Natl Acad Sci U S A 106:209–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Morrison LJ, Tait A, McCormack G, Sweeney L, Black A et al (2008) Trypanosoma brucei gambiense type 1 populations from human patients are clonal and display geographical genetic differentiation. Infect Genet Evol 8:847–854

    Article  CAS  PubMed  Google Scholar 

  35. MacLeod A (2005) The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Res 33:6688–6693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cooper A, Tait A, Sweeney L, Tweedie A, Morrison L et al (2008) Genetic analysis of the human infective trypanosome Trypanosoma brucei gambiense: chromosomal segregation, crossing over, and the construction of a genetic map. Genome Biol 9:R103

    Article  PubMed Central  PubMed  Google Scholar 

  37. Tait A, Masiga D, Ouma J, Macleod A, Sasse J et al (2002) Genetic analysis of phenotype in Trypanosoma brucei: a classical approach to potentially complex traits. Philos Trans R Soc Lond B Biol Sci 357:89–99. doi:10.1098/rstb.2001.1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. MacLeod A, Tweedie A, Welburn SC, Maudlin I, Turner CM et al (2000) Minisatellite marker analysis of Trypanosoma brucei: reconciliation of clonal, panmictic, and epidemic population genetic structures. Proc Natl Acad Sci 97:13442–13447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Agbo EC, Majiwa PAO, Claassen HJHM, te Pas MFW (2002) Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology 124:349–358

    Article  CAS  PubMed  Google Scholar 

  40. Kibona SN, Matemba L, Kaboya JS, Lubega GW (2006) Drug-resistance of Trypanosoma b. rhodesiense isolates from Tanzania. Trop Med Int Health 11:144–155. doi:10.1111/j.1365-3156.2005.01545.x

    Article  CAS  PubMed  Google Scholar 

  41. Welburn SC, Maudlin I, Milligan PJ (1995) Trypanozoon: infectivity to humans is linked to reduced transmissibility in tsetse. I. Comparison of human serum-resistant and human serum-sensitive field isolates. Exp Parasitol 81:404–408. doi:10.1006/expr.1995.1131

    Article  CAS  PubMed  Google Scholar 

  42. Morrison LJ, Tait A, McLellan S, Sweeney L, Turner CMR et al (2009) A major genetic locus in Trypanosoma brucei is a determinant of host pathology. PLoS Negl Trop Dis 3:e557. doi:10.1371/journal.pntd.0000557

    Article  PubMed Central  PubMed  Google Scholar 

  43. Pinchbeck GL, Morrison LJ, Tait A, Langford J, Meehan L et al (2008) Trypanosomosis in the gambia: prevalence in working horses and donkeys detected by whole genome amplification and PCR, and evidence for interactions between trypanosome species. BMC Vet Res 4:7. doi:10.1186/1746-6148-4-7

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bronsvoort B, Wissmann BV, Fèvre EM, Handel IG, Picozzi K et al (2010) No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya. PLoS One 5:e8628

    Article  Google Scholar 

  45. Cox AP, Tosas O, Tilley A, Picozzi K, Coleman P et al (2010) Constraints to estimating the prevalence of trypanosome infections in East African zebu cattle. Parasit Vectors 3:82. doi:10.1186/1756-3305-3-82

    Article  PubMed Central  PubMed  Google Scholar 

  46. MacLean L, Chisi JE, Odiit M, Gibson WC, Ferris V et al (2004) Severity of human African trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun 72:7040–7044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sternberg JM, MacLean L (2010) A spectrum of disease in human African trypanosomiasis: the host and parasite genetics of virulence. Parasitology 137:2007–2015. doi:10.1017/S0031182010000946

    Article  PubMed  Google Scholar 

  48. MacLean L, Chisi JE, Odiit M, GIBSON WC, Ferris V et al (2004) Severity of human african trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host inflammatory cytokine response profile. Infect Immun 72:7040–7044. doi:10.1128/IAI.72.12.7040-7044.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jamonneau V, Ilboudo H, Kaboré J, Kaba D, Koffi M et al (2012) Untreated Human Infections by Trypanosoma brucei gambiense Are Not 100 % fatal. PLoS Negl Trop Dis 6:e1691. doi:10.1371/journal.pntd.0001691

    Article  PubMed Central  PubMed  Google Scholar 

  50. Jamonneau V, Ravel S, Garcia A, Koffi M (2004) Characterization of Trypanosoma brucei sl infecting asymptomatic sleeping-sickness patients in Cote d'Ivoire: a new genetic group? Ann Trop Med Parasitol 98:329–337

    Article  CAS  PubMed  Google Scholar 

  51. Garcia A, Courtin D, Solano P, Koffi M, Jamonneau V (2006) Human African trypanosomiasis: connecting parasite and host genetics. Trends Parasitol 22:405–409. doi:10.1016/j.pt.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  52. Bucheton B, MacLeod A, Jamonneau V (2011) Human host determinants influencing the outcome of Trypanosoma brucei gambiense infections. Parasite Immunol 33:438–447. doi:10.1111/j.1365-3024.2011.01287.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kaboré J, Koffi M, Bucheton B, Macleod A, Duffy C et al (2011) First evidence that parasite infecting apparent aparasitemic serological suspects in human African trypanosomiasis are Trypanosoma brucei gambiense and are similar to those found in patients. Infect Genet Evol 11:1250–1255. doi:10.1016/j.meegid.2011.04.014

    Article  PubMed  Google Scholar 

  54. Göring HHH, Curran JE, Johnson MP, Dyer TD, Charlesworth J et al (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39:1208–1216. doi:10.1038/ng2119

    Article  PubMed  Google Scholar 

  55. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP et al (2007) Population genomics of human gene expression. Nat Genet 39:1217–1224. doi:10.1038/ng2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Holzmuller P, Biron DG, Courtois P, Koffi M, Bras-Gonçalves R et al (2008) Virulence and pathogenicity patterns of Trypanosoma brucei gambiense field isolates in experimentally infected mouse: differences in host immune response modulation by secretome and proteomics. Microbes Infect 10:79–86. doi:10.1016/j.micinf.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  57. Morrison LJ, McLellan S, Sweeney L, Chan CN, MacLeod A et al (2010) Role for parasite genetic diversity in differential host responses to Trypanosoma brucei Infection. Infect Immun 78:1096–1108. doi:10.1128/IAI.00943-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52. doi:10.1038/nrg703

    Article  CAS  PubMed  Google Scholar 

  59. Manly KF, Cudmore RH, Meer JM (2014) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932. doi:10.1007/s00335-001-1016-3

    Article  Google Scholar 

  60. Seaton G, Haley CS, Knott SA, Kearsey M (2002) QTL express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340

    Article  CAS  PubMed  Google Scholar 

  61. MacLeod A, Turner C, Tait A (2007) The system of genetic exchange in Trypanosoma brucei and other trypanosomatids. Trypanosomes: after the genome. Horizon, Linton, UK

    Google Scholar 

  62. Mu J, Myers RA, Jiang H, Liu S, Ricklefs S et al (2010) Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet 42:268–271. doi:10.1038/ng.528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Reid AJ, Vermont SJ, Cotton JA, Harris D, Hill-Cawthorne GA et al (2012) Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: coccidia differing in host range and transmission strategy. PLoS Pathog 8:e1002567. doi:10.1371/journal.ppat.1002567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Liti G, Carter DM, Moses AM, Warringer J, Parts L et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. doi:10.1038/nature07743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Grab DJ, Nikolskaia O, Kim YV, Lonsdale-Eccles JD, Ito S et al (2004) African trypanosome interactions with an in vitro model of the human blood–brain barrier. J Parasitol 90:970–979. doi:10.1645/GE-287R

    Article  PubMed  Google Scholar 

  66. Nikolskaia OV (2006) Blood–brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. J Clin Invest 116:2739–2747. doi:10.1172/JCI27798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Abdulla M-H, O’Brien T, Mackey ZB, Sajid M, Grab DJ et al (2008) RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Negl Trop Dis 2:e298. doi:10.1371/journal.pntd.0000298

    Article  PubMed Central  PubMed  Google Scholar 

  68. Kemp SJ, Iraqi F, Darvasi A, Soller M, Teale AJ (1997) Localization of genes controlling resistance to trypanosomiasis in mice. Nat Genet 16:194–196. doi:10.1038/ng0697-194

    Article  CAS  PubMed  Google Scholar 

  69. Courtin D, Berthier D, Thevenon S, Dayo G-K, Garcia A et al (2008) Host genetics in African trypanosomiasis. Infect Genet Evol 8:229–238. doi:10.1016/j.meegid.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  70. Iraqi F, Clapcott SJ, Kumari P, Haley CS, Kemp SJ et al (2014) Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm Genome 11:645–648. doi:10.1007/s003350010133

    Article  Google Scholar 

  71. Nganga JK, Soller M, Iraqi FA (2010) High resolution mapping of trypanosomosis resistance loci Tir2 and Tir3 using F12 advanced intercross lines with major locus Tir1 fixed for the susceptible allele. BMC Genomics 11:394. doi:10.1186/1471-2164-11-394

    Article  PubMed Central  PubMed  Google Scholar 

  72. Goodhead I, Archibald A, Amwayi P, Brass A, Gibson J et al (2010) A comprehensive genetic analysis of candidate genes regulating response to Trypanosoma congolense infection in mice. PLoS Negl Trop Dis 4:e880. doi:10.1371/journal.pntd.0000880

    Article  PubMed Central  PubMed  Google Scholar 

  73. Hanotte O, Ronin Y, Agaba M, Nilsson P, Gelhaus A et al (2003) Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N’Dama and susceptible East African Boran cattle. Proc Natl Acad Sci U S A 100:7443–7448. doi:10.1073/pnas.1232392100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Hill EW, O’Gorman GM, Agaba M, Gibson JP, Hanotte O et al (2005) Understanding bovine trypanosomiasis and trypanotolerance: the promise of functional genomics. Vet Immunol Immunopathol 105:247–258. doi:10.1016/j.vetimm.2005.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette MacLeod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Capewell, P. et al. (2015). Exploiting Genetic Variation to Discover Genes Involved in Important Disease Phenotypes. In: Peacock, C. (eds) Parasite Genomics Protocols. Methods in Molecular Biology, vol 1201. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1438-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1438-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1437-1

  • Online ISBN: 978-1-4939-1438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics